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Perfectly null sets: measure on perfect sets

Canonical homeomorphism: hP : 2ω → P

Measure on pefect set µP(A) = λ(h−1
P [A]),

where λ is the standard Lebesgue measure on 2ω.

Ex. µP ([110]) = 1
4 .
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Perfectly null sets

Definition

A set X ⊆ 2ω is perfectly null if for every perfect set P ⊆ 2ω,
µP (P ∩ X ) = 0.

Observation

UN ⊆ PN.

Recall that a set X is in Marczewski ideal s0 if for any perfect set P,
there exists a perfect set Q ⊆ P such that X ∩ Q = ∅.

Observation

PN ⊆ s0.
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The main problem

The main open question

Is it consistent, that UN ( PN?

On the category side all known arguments proving that it is consistent
that UM ( PM use the idea of the Lusin function or similar ideas.

Lusin function (Lusin, Sierpiński, [7])

There exists a function L : ωω → 2ω, such that:

L is continuous and one-to-one,

if L is a Lusin set, then L[L] ∈ PM,

L−1 is of the Baire class one.

Recall that UM is closed under taking Borel isomorphic images. So if
there exists a Lusin set it is obvious that UM ( PM.

Question

Does there exist a measure counterpart to the Lusin function?
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The idea of the transitive version

Recall that a set is perfectly meager if it is meager in every perfect
set (in the subset topology). It may seem superfluous but we can say
that a set X is perfectly meager if for every perfect set P and t ∈ 2ω

there exists a Fσ set F ⊇ X such that F is meager in P + t. This,
and the question of M. Scheepers of whether the algebraic sum of a
SN set and a SM set is always s0, motivates the following definition.

Perfectly meager in the transitive sense (Nowik, Scheepers, Weiss, [4])

A set X is perfectly meager in the transitive sense (PM′) if for any
perfect set P there exists Fσ set F , F ⊇ X such that for every
t ∈ 2ω, F is meager in P + t.

Theorem (Nowik, Scheepers, Weiss, [4], [5], [3])

SM ⊆ PM′ ⊆ UM and those inclusions are consistently proper.
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SN ⊆ PN′

Theorem

Every strongly null set is perfectly null in the transitive sense.

Proof (sketch):
Let X be a strongly null set and P a perfect set. Recall that since X
is strongly null, for every sequence of positive numbers 〈εn〉n∈ω there
exists a sequence of open sets 〈An : n ∈ ω〉 such that
X ⊆

⋂
m∈ω

⋃
n≥m An and diamAn ≤ εn.

We can take such εn, that for every A such that diamA < εn,
µP (A) < 1

2n .
For such εn, (

⋂
m∈ω

⋃
n≥m An) + t is of measure µP zero for any

t ∈ 2ω and therefore it can be used as the Gδσ set in the definition of
perfectly null set in the transitive sense. �
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It is consistent that UN 6= PN′

Theorem

If there exists a UN set of cardinality c then there exists a set
Y ∈ UN \ PN′.

Proof (sketch): The method used in this proof first appeared in a
paper of I. Rec law [6] and later in [8].
We can construct disjoint perfect sets C ,D ⊆ 2ω, such that C ∪ D is
linearly independent over Z2. And we can assume that X ∈ UN,
X ⊆ C and |X | = c.
Enumerate all Gδσ sets as {Bx : x ∈ X}.
Choose yx ∈ x + D for x ∈ X , such that yx /∈ Bx if
(x + D) \ Bx 6= ∅. Let Y = {yx : x ∈ X}.
+: C ×D → C + D is a homeomorphism and π1[+−1[Y ]] = X , so Y
is also universally null.
Assume that Y ∈ PN′. Then there exists x ∈ X such that Y ⊆ Bx

and for any t ∈ 2ω µD(Bx + t) = 0. Take t = x . We see that
yx ∈ Bx , so D ∩ (Bx + x) = D, so µD(Bx + x) = 1. A contradiction.
�
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Y ∈ UN \ PN′.

Proof (sketch): The method used in this proof first appeared in a
paper of I. Rec law [6] and later in [8].
We can construct disjoint perfect sets C ,D ⊆ 2ω, such that C ∪ D is
linearly independent over Z2. And we can assume that X ∈ UN,
X ⊆ C and |X | = c.
Enumerate all Gδσ sets as {Bx : x ∈ X}.

Choose yx ∈ x + D for x ∈ X , such that yx /∈ Bx if
(x + D) \ Bx 6= ∅. Let Y = {yx : x ∈ X}.
+: C ×D → C + D is a homeomorphism and π1[+−1[Y ]] = X , so Y
is also universally null.
Assume that Y ∈ PN′. Then there exists x ∈ X such that Y ⊆ Bx

and for any t ∈ 2ω µD(Bx + t) = 0. Take t = x . We see that
yx ∈ Bx , so D ∩ (Bx + x) = D, so µD(Bx + x) = 1. A contradiction.
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Open problems

We wanted to know whether SN ⊆ PN′ ⊆ UN and whether those
inclusions are consistently proper.
We proved that:

1 Every strongly null set is perfectly null in the transitive sense.

2 If there exists a UN set of cardinality c, there exists a set
Y ∈ UN \ PN′.

The other two problems are still open:

Question

Is it consistent that SN 6= PN′?

In particular, does there exist uncountable PN′ set in every model of
ZFC?

Question

PN′ ⊆ UN?
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