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We are interested in the 0-dimensional compactifications of ω which are

denoted by γω.

Such compactification comes from Stone representation

of some Boolean algebra A containing finite subsets of ω.

Definition. A growth of ω is a compact set K such that there exists

a compactification γω and K ' γω \ ω.

Definition. A measure µ is strictly positive if µ(U) > 0 for any

non-empty open set.



We are interested in the 0-dimensional compactifications of ω which are

denoted by γω. Such compactification comes from Stone representation

of some Boolean algebra A containing finite subsets of ω.

Definition. A growth of ω is a compact set K such that there exists

a compactification γω and K ' γω \ ω.

Definition. A measure µ is strictly positive if µ(U) > 0 for any

non-empty open set.



We are interested in the 0-dimensional compactifications of ω which are

denoted by γω. Such compactification comes from Stone representation

of some Boolean algebra A containing finite subsets of ω.

Definition. A growth of ω is a compact set K such that there exists

a compactification γω and K ' γω \ ω.

Definition. A measure µ is strictly positive if µ(U) > 0 for any

non-empty open set.



We are interested in the 0-dimensional compactifications of ω which are

denoted by γω. Such compactification comes from Stone representation

of some Boolean algebra A containing finite subsets of ω.

Definition. A growth of ω is a compact set K such that there exists

a compactification γω and K ' γω \ ω.

Definition. A measure µ is strictly positive if µ(U) > 0 for any

non-empty open set.



Fact. Every separable compactum is a growth of ω.

Theorem (Parovic̆enko). Under CH every compact space of weight at

most c is a growth of ω.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of ω.

Question. Does there exists in ZFC a non-separable growth of ω

carrying a strictly positive measure?



Fact. Every separable compactum is a growth of ω.

Theorem (Parovic̆enko). Under CH every compact space of weight at

most c is a growth of ω.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of ω.

Question. Does there exists in ZFC a non-separable growth of ω

carrying a strictly positive measure?



Fact. Every separable compactum is a growth of ω.

Theorem (Parovic̆enko). Under CH every compact space of weight at

most c is a growth of ω.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of ω.

Question. Does there exists in ZFC a non-separable growth of ω

carrying a strictly positive measure?



Fact. Every separable compactum is a growth of ω.

Theorem (Parovic̆enko). Under CH every compact space of weight at

most c is a growth of ω.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of ω.

Question. Does there exists in ZFC a non-separable growth of ω

carrying a strictly positive measure?



Fact. Every separable compactum is a growth of ω.

Theorem (Parovic̆enko). Under CH every compact space of weight at

most c is a growth of ω.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of ω carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of ω.

Question. Does there exists in ZFC a non-separable growth of ω

carrying a strictly positive measure?



Remark. There are constructions (in ZFC) of compactifications of ω

with non-separable growth (by Bell, van Mill, Todorčević) but it seems

that there is no strictly positive measure on those spaces.

Summary

The aim is to construct the compactification γω of ω such that its

remainder (i.e. γω \ ω) is non-separable and supports the strictly positive

measure.

Notation.

λ denotes a standard product measure on 2ω,

E = {A ∈ 2ω : λ(Ā) = 0},

κ0 = cov(E) = min
{
|U| : U ⊆ E and

⋃
U = 2ω

}
,

b denotes the minimal size of the unbounded family

F ⊆ ωω ordered by ≤∗.
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Theorem (D., Plebanek). Assume cof[κ0]≤ω ≤ b. There exists a

compactification γω of the set of natural numbers such that its

remainder γω \ ω is non-separable and carries a strictly positive regular

probability Borel measure.

Remark. Observe that OCA implies b = ω2. Moreover, we can assume

that c = ω2, so this construction works in the models of set theory where

Stone space of measure algebra is not a growth of ω.

Theorem (D., Plebanek). Assume cof[κ0]≤ω ≤ b. There exists a

Boolean algebra A such that fin ⊆ A ⊆ P(ω) and a finitely additive

probability measure µ on A such that

A/fin is not σ-centered,

µ(A) = 0 if and only if A is finite (µ is almost strictly positive)
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Sketch of the proof

Denote κ = cof[κ0]≤ω. We shall prove the theorem by inductive

construction, gradually enlarging Boolean algebras and extending

measures. For any X ⊆ ω we have

A[X ] =
{

(A ∩ X ) ∪ (A′ \ X ) : A,A′ ∈ A
}

.

µ∗(Z ) = sup{µ(A) : A ∈ A,A ⊆ Z}

µ∗(Z ) = inf{µ(A) : A ∈ A,A ⊇ Z} for Z ⊆ ω.

We can exetend measure µ on A onto a mesure µ̃ on A[X ] by setting

µ̃
(
(A ∩ X ) ∪ (A′ \ X )

)
= µ∗(A ∩ X ) + µ∗(A′ \ X ).
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We construct an increasing sequence of algebras (Aξ, µξ) such that

|Aξ| < b,

µξ is almost strictly positive,

µν extends µξ for ξ < ν.

We begin with a A0 which is countable Boolean algebra with a measure

almost strictly positive.

On each step α + 1 of the induction we add to the algebra new set Xα+1

such that

Xα+1 kills a chosen countable set to be dense in Stone(A0),

we should be able to extend the a.s.p. measure µα to a.s.p. µ̃ on

A[Xα+1].
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Finally we take A =
⋃
ξ<κ Aξ. The measure µ on A is the extension of

all µξ.

Why algebra A satisfies the condition that the Stone space of it has the

desired properties?

Take any countable set {pi : i ∈ ω} ⊆ Stone(A). On step α of the

induction we have added a set X which generates an open non-empty set

which does not contain the points pi .

Question

Does there exist a ZFC construction of a non-separable growth of ω

carrying a strictly positive measure?
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