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of some Boolean algebra 2 containing finite subsets of w.

Definition. A growth of w is a compact set K such that there exists

a compactification yw and K ~ yw \ w.

Definition. A measure p is strictly positive if u(U) > 0 for any

non-empty open set.
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Fact. Every separable compactum is a growth of w.

Theorem (Parovicenko). Under CH every compact space of weight at

most ¢ is a growth of w.

Corollary. Under CH a Stone space of the measure algebra is

a non-separable growth of w carrying strictly positive measure.

Theorem (Dow & Hart). Under OCA the Stone space of the measure

algebra is not a growth of w.

Question. Does there exists in ZFC a non-separable growth of w

carrying a strictly positive measure?
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Remark. There are constructions (in ZFC) of compactifications of w
with non-separable growth (by Bell, van Mill, Todor&evi¢) but it seems

that there is no strictly positive measure on those spaces.

Summary

The aim is to construct the compactification yw of w such that its
remainder (i.e. yw \ w) is non-separable and supports the strictly positive
measure.
Notation.

@ )\ denotes a standard product measure on 2%,

o £E={Ac2v: \(A) =0},

o ko =cov(&) =min {{U|: U C € and JU =29},

o b denotes the minimal size of the unbounded family

F C w* ordered by <*.
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Theorem (D., Plebanek). Assume cof[k]=% < b. There exists a
compactification yw of the set of natural numbers such that its
remainder yw \ w is non-separable and carries a strictly positive regular

probability Borel measure.

Remark. Observe that OCA implies b = w,. Moreover, we can assume
that ¢ = wpy, so this construction works in the models of set theory where

Stone space of measure algebra is not a growth of w.

Theorem (D., Plebanek). Assume cof[rg]=“ < b. There exists a
Boolean algebra 21 such that fin C 2l C P(w) and a finitely additive
probability measure i on 2 such that

o 2/fin is not o-centered,

o u(A) =0 if and only if A is finite (u is almost strictly positive)
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Sketch of the proof

Denote x = cof[ko]=“. We shall prove the theorem by inductive
construction, gradually enlarging Boolean algebras and extending
measures. For any X C w we have
AX] = {(AﬂX) UA'\X): A A € 52[}
wi(Z) = sup{u(A): Ac A, AC Z}
w(Z) =inf{u(A): Ac A,AD Z} for Z Cw.

We can exetend measure 1 on 2( onto a mesure [i on 2[X] by setting

A((ANX)U A\ X)) = ua(ANX) + (A \ X).
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We construct an increasing sequence of algebras (2, i¢) such that
o [Ae| <b,
o ¢ is almost strictly positive,

o u, extends u¢ for & < wv.

We begin with a 2y which is countable Boolean algebra with a measure

almost strictly positive.

On each step « + 1 of the induction we add to the algebra new set X, ;1
such that

0 Xy41 kills a chosen countable set to be dense in Stone(2y),

o we should be able to extend the a.s.p. measure p, to a.s.p. fi on
A Xot1]-
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Why algebra 2 satisfies the condition that the Stone space of it has the

desired properties?

Take any countable set {p;: i € w} C Stone(2A). On step « of the
induction we have added a set X which generates an open non-empty set

which does not contain the points p;.

Question

Does there exist a ZFC construction of a non-separable growth of w

carrying a strictly positive measure?



