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All spaces are assumed to be Hausdorff and infinite.

Diagrams hold for perfectly normal space.



Ohta—Sakai’s properties

ﬁ Ohta H. and Sakai M., Sequences of semicontinuous functions accompanying
continuous functions, Topology Appl. 156 (2009), 2683-2906.

USC LSC
USC, LSC,

USC,, LSCy,



X has property USC, if whenever (fy : n € w) of upper semicontinuous
usc functions with values in [0, 1] converges to zero, there is (g, : n € w)
of continuous functions converging to zero such that f,, < g, forany n € w.

X has property USCg, if whenever (f, : n € w) of upper semicontinuous functions with values
USCg in [0, 1] converges to zero, thereis (gyn, : n € w) of continuous functions converging to zero and
an increasing sequence { .y, }%’:0 suchthat fr,, < gm foranym € w.

X has property USCyy, , if whenever ( fy, : n € w) of upper semicontinuous functions with values
USCyp, in [0, 1] converges to zero and fnt1 < fnomn € w, thereis (gn, : n € w) of continuous functions
converging to zero such that f, < gp, forany n € w.

X has property LSC, if whenever ( f, : n € w) of lower semicontinuous
LSC functions with values in [0, 1] converges to zero, thereis (gn, : n € w)
of continuous functions converging to zero such that f, < gp, foranyn € w.

X has property LSCg, if whenever ( fy, : n € w) of lower semicontinuous functions with values
LSCs in [0, 1] converges to zero, there is (gn, : n € w) of continuous functions converging to zero and
an increasing sequence {7y, };’7?:0 such that fnm < gm forany m € w.

X has property LSCyy, , if whenever ( fy, : n € w) of lower semicontinuous functions with values
LSCyn, in [0, 1] converges to zeroand f, 1 < fn,n € w,thereis (gn : n € w) of continuous functions
converging to zero such that f, < gpn foranyn € w.

A function f is said to be lower semicontinuous, upper semicontinuous, if for every real number » the set
ffl((v-, o)) ={z € X : f(z) > r}, f’l((—oc, r)) = {x € X : f(x) < r}isopeninaspace X, respectively.



USC — USCs — USCy,

LSC — LSCs — LSCy,

USC;, - USCs

ZFC + p = b USC, — USC

Any discrete space satisfies all Ohta—Sakai’s properties.



Theorem (H. Ohta — M. Sakai [2009])

(1) Every compact scattered space has USC.

(2) Every ordinal with the order topology has USC.

(3) Every normal countably paracompact P-space has USC.
C(4) Every ~-set has USC,. )

Theorem (H. Ohta — M. Sakai [2009])
Every separable metrizable space with USC; is perfectly meager.

Theorem (H. Ohta — M. Sakai [2009])

Every normal countably paracompact space has USC,,,, and every space with USC,,, is
countably paracompact.

Theorem (H. Ohta — M. Sakai [2009])
A topological space X has USC,, if and only if X is a cb-space.

Let X be a topological space. Aset A C X is called perfectly meager if for any perfect set P C X the intersection A N P is meager
in the subspace P.

A topological space X is called a cb-space if for each real-valued locally bounded function f on X there is a continuous function g such
that | | < g. (J.G. Horne [1959] )



Proposition
For a perfectly normal space X the following are equivalent.

(1) X possesses USC.

(2) For any sequence {fy : n € w) of upper semicontinuous functions on X with
values in [0, 1] converging to zero, there is a sequence (gn : n € w) of
functions converging to zero such that f, < gn foranyn € w.

(3) For any sequence (fn : n € w) of upper semicontinuous functions on X
with values in [0, 1] converging to zero, there is a sequence (gn, : n € w) of
continuous functions converging to zero such that f, < gn foranyn € w.

(5) For any sequence (fn : n € w) of upper semicontinuous functions on X
on X, there is a sequence (g, : n € w) of
continuous functions converging to | such that f, < gn foranyn € w.

Similarly for USCs.



@ éupina J., Notes on modifications of a wQN-space, Tatra Mt. Math. Publ.
58 (2014), 129—-136.

@ Supina J., On Ohta-Sakai'’s properties of a topological space, to appear.



asetX, F,GCXR,

0eF, G

We say that X has a property wED(F, G), if
(1) for any sequence (fm : m € w) of functions from F converging to 0,

(2) there are sequences (gm : m € w) and (h,, : m € w) of functions from G
converging to 0 and

(3) there is an increasing sequence of natural numbers {n,,}2°_,
such that for any z € X we have

hm(z) < fn,, () < gm(z) for all but finitely many m € w.

wED(F, G) is trivial for F C G.

If 71 C F2 and G1 C Go then wED(F2, G1) — WED(F1, G2).



Const

the family of all real-valued functions on X

the family of all functions on X with values in [0, 1]
the family of all continuous functions on X

the family of all Borel functions on X

the family of all upper semicontinuous functions on X
the family of all lower semicontinuous functions on X

the family of all constant functions on X

FCXR F=FnX[,1]




asetX, F,GCXR, 0€F,G

We say that X has a property wED(F, G), if
(1) for any sequence (fm : m € w) of functions from F converging to 0,

(2) there are sequences (gm : m € w) and (h, : m € w) of functions from G
converging to 0 and

(3) there is an increasing sequence of natural numbers {n,,}2°_,
such that for any = € X we have

hm(z) < fn,, () < gm(z) for all but finitely many m € w.

{min{f,1}; f€G} CG {max{f,0}; f€G} CG

X has wED(f, G) if and only if
(1) for any sequence (fm : m € w) of functions from F converging to 0,
(2) there is a sequence (g., : m € w) of functions from G converging to 0 and
(3) there is an increasing sequence of natural numbers {n.,}>°_,

such that for any = € X we have

Frm (@) < gm () for all but finitely many m € w.



Convergence of (f,, :n € w), fo,f: X —R

Pointwise convergence P fn - f
(Vz € X)(Ve > 0)(3no)(Vn € w)(n > ng — |fn(z) — f(x)] <€)

Quasi-normal convergence QN fn @, f
there exists (e, : n € w) converging to 0 such that

(Vz € X)(3no)(Vn € w)(n > no — |fn(z) — f(z)| <en)

. D
Discrete convergence D fn—1Ff

(VY € X)(3no)(Vn € w)(n > ng — falz) = f(z))



L. Bukovsky, I. Rectaw and M. Repicky [2001] wFQN-space
L. Bukovsky and J. $. [2013] WQN £-space
Let F be a family of functions on a set X. We say that X is a wQN £-space if each

sequence of functions from F converging pointwise to zero on X has a subsequence
converging quasi-normally.

wWQN = = WED(F, Const)




Lemma
Let X be a topological space, F,G, H C XR. If X has wED(F, G) and wED(G, H) then
X has wED(F, H).

Lemma
Let X be a topological space, F,G C X[0,1], Const C G. If X has wQN » then X has
wED(F, G).

Theorem
Let X be a topological space, Const C G C F C X[0,1]. X has wED(F, G) and wWQNg
ifand only if X has wQN .



y-set

I

QN Sl(F,F) wQN L{fm(Ow,F)

J’ due to L. Bukovsky, |. Rectaw and M. Repicky [1991], M. Scheepers [1996], [1997]
o-set 1. Rectaw [1997], J. Hale$ [2005], L. Bukovsky and J. Hale$ [2007] and M. Sakai [2007]

L. Bukovsky, I. Rectaw and M. Repicky [1991]

A topological space X is a QN-space (a wQN-space) if each sequence of continuous
real-valued functions converging to zero on X is (has a subsequence) converging
quasi-normally.

WQN = wQN¢(x) = wED(C(X), Const)

M. Scheepers [1996]

A topological space X is an S;(I', I')-space if for every sequence (A, : n € w) of open
~-covers of X there exist sets U, € Ap,n € w such that {U,; n € w} is a y-cover.

An infinite cover A is a v-cover if every @ € X lies in all but finitely many members of .A.
A topological space X is a o-set if every Fo subset of X isa G setin X. (<1933)

A topological space X is a ~y-set if any open w-cover of X contains ~-subcover.



Corollary (of Tsaban — Zdomskyy Theorem [2012])
If X is a perfectly normal space, F C B and Const C G then

QN = wED(B, Const) — wED(F, G).



Scheepers’ Conjecture [1999]
Any perfectly normal wQN-space is an S1 (T, I')-space.

wQNZ — WONZ; —  wQN

L. Bukovsky [2008]

(1) Any wQN z-space is a QN-space.

(2) Any S1 (I, T")-space is a wQN; -space.
B. Tsaban — L. Zdomskyy [2012]

Any perfectly normal QN-space is a wQN z-space.

M. Sakai [2009]
Any wQN;-space is an S1 (T, T')-space.



- aN §1(I, T)
USCs — wEDU, C(X)) I i

wQN Vi — wQNl} — wWQN

Theorem (H. Ohta — M. Sakai [2009])
Any wQN-space with USC, is an S1 (T, T")-space.
J. Hale$ [2005], M. Sakai [2007], L. Bukovsky and J. Hales$ [2007]

Theorem (H. Ohta — M. Sakai)
Let X be a perfectly normal space with Ind(X) = 0.

(1) X possesses USC. (1)* X possesses USCs.
(2) X is (~,~)-shrinkable. (2)*  Open ~-cover of X is shrinkable.
(38) Xisao-set. (3)* X is a~~yco-space.

Theorem

A topological space X is an S (T, T)-space if and only if X is a wQN-space with the
property wED(U, C(X)).

A topological space X is a o-set if every F subsetof X isaGg setin X.



Any wQN-space with LSC, is a wQN z-space.

Theorem (H. Ohta — M. Sakai [2009])

For a Tychonoff space X the following are equivalent.
(1) X possesses LSC.

(2) X possesses LSCs.

(3) X possesses LSC,.
(4) X isaP-space and....

LSC: — wED(L, C(X))

The only examples of perfectly normal space with LSC are all discrete spaces.

Theorem
(a) A topological space X is a wQN z-space if and only if X is a wQN-space with the
property wED(L, C(X)).
(b) A normal space X is a wQN z-space if and only if X is an $1(T',I")-space with
the property wED(L, U).
(c) A perfectly normal space X is a QN-space if and only if X has the Hurewicz
property as well as the property wED(L, C(X)).



Theorem
Let X be a perfectly normal space.

(1) X has wED(Z, C(X)) if and only if X has wED(L, U{).
(2) IfBy C F C Bthen

WED(B, C(X)) = wED(F, C(X)) = wED(F, U).

Corollary
Let X be a perfectly normal space with Hurewicz property, L CFCB. Then

QN = wED(F, C(X)) = wED(F, U).

We say that a topological space X possesses Hurewicz property if for any sequence (U5, : n € w) of countable open covers not

containing a finite subcover there are finite sets Vy, C Up,, n € w suchthat {{J V3 n € w} isa ~y-cover.



asetX, F,GHCXR, 0€F,G.H

We say that X has a property wED"'(F, G), if

(1) for any sequence (fm : m € w) of functions from F converging to a function
femN,

(2) there are sequences (g, : m € w) and (h,, : m € w) of functions from G
converging to f and

(3) there is an increasing sequence of natural numbers {n., }5°_
such that

hm(2) < fr,, () < gm(x) for all but finitely many m € w.



Proposition
Let X be a perfectly normal space. The following are equivalent.
(1) X possesses wED(U, C(X)).

(2) For any sequence {fm : m € w) of upper semicontinuous functions on X with
values in R converging to F,-measurable function f, there is a sequence

(gm : m € w) of continuous functions converging to f and an increasing sequence
of natural numbers {nm,}2°_ such that (fn,, : m € w) <* (gm : M € w).

Theorem
Let X be a perfectly normal space. Then

wED(L, C(X)) = wED(L, C(X)) = wEDWU, C(X)) = wEDB(L, C(X)) = wEDBU, C(X)).



asetX, F,GHCXR, 0€F,GH

We say that X has a property ED"{(F, G), if

(1) for any sequence (fm : m € w) of functions from F converging to a function
femR,

(2) there are sequences (gm : m € w) and (h,, : m € w) of functions from G
converging to f and

3y thereis-an-increasing-sequence-of-natural-numbers{rm}2>—

such that

hm(z) < fm(z) < gm(z) for all but finitely many m € w.

Theorem
Let X be a perfectly normal space. Then for any {0} C F C B we have

wED(L, C(X)) = wEDZ (£, C(X)) = wEDF (U4, C(X))
= ED7 (L, C(X)) = ED¥ (U, C(X)).



Theorem

(c) A perfectly normal space X is a QN-space if and only if X has the Hurewicz
property as well as the property wED(L, C(X)).

Theorem (L. Bukovsky et al. [2001], B. Tsaban — L. Zdomskyy [2012])

A perfectly normal space X is a QN-space if and only if X has Hurewicz property and
every F,-measurable function is discrete limit of continuous functions.

Theorem (A. Csaszar — M. Laczkovich [1979], Z. Bukovska [1991])
Let X be a normal space, f : X — R. The following are equivalent.

(1) f is a discrete limit of a sequence of continuous functions on X.

(2) f is a quasi-normal limit of a sequence of continuous functions on X .

(3) There is a sequence (Fy, : n € w) of closed subsets of X such that f|F,, is
continuous on Fy, foranyn € wand X = F,.

new

Discrete convergence fn L, f =Wz e X)(3ng)(Vn € w)(n > ng — fp(xz) = f(x))



We say that a topological space X has a property DL(F, G) if any function from F is
a discrete limit of a sequence of functions from G.

J. Cichon — M. Morayne [1988], J. Cichon — M. Morayne — J. Pawlikowski —
S. Solecki [1991]

Theorem
(a) Let X be a topological space. Then

DL, C(X)) = DL(L, C(X)) = DLW, C(X)) = DL(L, C(X)) =
(VY C X) DLW, C(Y)) = (VY C X) DL(L, C(Y)).

(b) Let X be a separable metrizable space. Then

DL, £) = DL(L, U) = DL(L, C(X)) = DL(B1, C(X)) = DL(B, C(X)).

Discrete convergence fn D, f =Wz € X)(3ng)(Vn € w)(n > ng — fn(z) = f(x))



Theorem B
Let X be a perfectly normal space. If X has wED(L, U) then X has DL(531, C(X)).

Proposition
If a topological space X has DL(U, L) then X is a o-set.

Corollary

LetL C F C XR. Any perfectly normal space X possessing wED(F,U) is a o-set.
Hence, X possesses wED(U, C(X)).

Theorem (J.E. Jayne — C.A. Rogers [1982])
If A is an analytic subset of a Polish space then A has DL(AS-measurable, C(X)).



Subsets of perfect Polish space

QN ~  Sy(I,D)
/

l X l
'
LSC — WwED(L C(X)) — USC — USC; — wEDMU,C(X))

¢ MMl ¢

DL(B1,C(X)) — o — PM

ZFC - wED(L, C(X)) - QN ZFC - wED(L, C(X)) - LSC

ZFC - wEDU, C(X)) - S$1(T',T)

ZFC + p = b+ wEDWU, C(X)) » o

ZFC + p = b+ wEDU, C(X)) - wED(L, C(X))
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Thanks for Your attention!



