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Topologies generated by adding single points

Definition
We say that a topological space X is

Fréchet–Urysohn if ∀A ⊆ X
∀x ∈ A ∃S ⊆ A a sequence : S → x ,

radial if ∀A ⊆ X
∀x ∈ A ∃S ⊆ A a transfinite sequence : S → x ,

discretely Whyburn if ∀A ⊆ X
∀x ∈ A ∃D ⊆ A discrete : D \ A = {x},

Whyburn if ∀A ⊆ X
∀x ∈ A ∃B ⊆ A : B \ A = {x}.



Topologies generated by adding single points

Definition
We say that a topological space X is

sequential if ∀A ⊆ X non-closed
∃x ∈ A \ A ∃S ⊆ A a sequence : S → x ,

pseudoradial if ∀A ⊆ X non-closed
∃x ∈ A \ A ∃S ⊆ A a transfinite sequence : S → x ,

weakly discretely Whyburn if ∀A ⊆ X non-closed
∃x ∈ A \ A ∃D ⊆ A discrete : D \ A = {x},

weakly Whyburn if ∀A ⊆ X non-closed
∃x ∈ A \ A ∃B ⊆ A : B \ A = {x}.



Closure operators

Definition
We say that a mapping C : P(X )→ P(X ) is a closure operator on
a space X if the following holds:

∀A,B ⊆ X : A ⊆ B =⇒ C(A) ⊆ C(B),
∀A ⊆ X : A ⊆ C(A).

We also define additional properties of a closure operator C :
∀A ⊆ X : C(C(A)) ⊆ C(A) (transitivity),
∀A,B ⊆ X : C(A ∪ B) = C(A) ∪ C(B) (additivity),
C(∅) = ∅ (groundedness).

Definition
Let C be a closure operator on X . A set A ⊆ X is C-closed if
C(A) = A, and it is C-open if its complement is C -closed.



Closure operators

Observation

Intersection of any system of C -closed sets is a C -closed set.
Hence, C -closed sets form a complete lattice. And dually for
C -open sets.
If we define C0(A) := A, Cα+1(A) := C(Cα(A)),
Cα(A) :=

⋃
β<α Cβ(A) for α limit, we get an increasing

sequence of closure operators and C(A) :=
⋃
α∈On Cα(A) is

the transitive hull of the operator C .
A set is C -closed if and only if it is C -closed.



Closure schemes

Definition
A collection C = 〈CX : X ∈ Top〉 which assigns a closure operator
CX to each topological space X is called closure scheme if it holds
that

∀h : X → Y homeo ∀A ⊆ X : h[CX (A)] = CY (h[A]),
∀X ∈ Top ∀A ⊆ X : CX (A) ⊆ AX .

Sometimes we write C(A,X ) instead of CX (A).



The property of being C-generated

Definition
Let C be a closure scheme, X a topological space.

We say that the space X is C-generated if
∀A ⊆ X : CX (A) = AX , i.e. CX = clX .
We say that the space X is weakly C-generated if it is
C-generated, i.e. ∀A ⊆ X : CX (A) = AX .
We say that X is C-generated at a point x ∈ X if
∀A ⊆ X : x ∈ AX =⇒ x ∈ CX (A).
We say that X is weakly C-generated at a point x ∈ X if it is
C-generated at x , i.e. ∀A ⊆ X : x ∈ AX =⇒ x ∈ CX (A).



Closure schemes – examples

Examples

The topological closure cl = 〈clX : X ∈ Top〉 is a transitive
additive closure scheme. Every topological space is
cl-generated.
The scheme CId = 〈idP(X) : X ∈ Top〉 is a transitive additive
closure scheme. A topological space is CId-generated iff it is
discrete, and it is CId-generated at a point iff that point is
isolated.
We define closure schemes CSeq, CRad, CD, CDWh, CWh as
CSeq(A,X) := {x ∈ X : ∃S ⊆ A a sequence : S → x},
CRad(A,X) := {x ∈ X : ∃S ⊆ A a transfinite sequence : S → x},
CD(A,X) :=

⋃
{D : D ⊆ A discrete},

CDWh(A,X) := A ∪
⋃
{D : D ⊆ A discrete, |D \ A| = 1},

CWh(A,X) := A ∪
⋃
{B : B ⊆ A, |B \ A| = 1}.



C-hereditary and C-continuous mappings

Definition
Let C be a closure scheme, X and Y topological spaces. We say
that a mapping f : X → Y is

C-continuous if
∀A ⊆ X : f [CX (A)] ⊆ CY (f [A]);
C-hereditary if it is injective and
∀A ⊆ X : f [CX (A)] ⊇ CY (f [A]) ∩ rng(f );
C-continuous at a point x ∈ X if
∀A ⊆ X : x ∈ CX (A) =⇒ f (x) ∈ CY (f [A]);
C-hereditary at a point x ∈ X if it is injective and
∀A ⊆ X : x ∈ CX (A) ⇐= f (x) ∈ CY (f [A]);



C-hereditary and C-continuous mappings

Proposition

Continuity is the same thing as cl-continuity.
If a mapping is C-continuous, then the preimage of any
C-closed set is a C-closed set. Moreover, if the scheme C is
transitive, then the other implication also holds.

Proposition
Let C be a closure scheme, X , Y topological spaces, f : X → Y .

If f is C-continuous, then it is C-continuous.
If f is C-hereditary, then it is C-hereditary if either

rng(f ) is a C-closed subset of Y or
rng(f ) is a C-open subset of Y and C is an additive scheme.



Preservation under subspaces, heredity

Theorem
Let C be a closure scheme, x ∈ X , a mapping f : X → Y
C-hereditary at x and continuous at x . If Y is C-generated at f (x),
then X is C-generated at x .

Theorem
Let C be a closure scheme and a mapping f : X → Y C-hereditary
and continuous.

If Y is C-generated, then X is also C-generated.
If Y is weakly C-generated, then X is also weakly C-generated
if either

rng(f ) is a C-closed subset of Y or
rng(f ) is a C-open subset of Y and C is an additive scheme.



Preservation under subspaces, heredity

Corollary
Let C be a closure scheme.

If all embeddings are C-hereditary, then C-generating is a
hereditary property.
If closed embeddings are C-hereditary, then weak C-generating
is a closed hereditary property.
If open embeddings are C-hereditary and the scheme C is
additive, then weak C-generating is an open hereditary
property.
If all embeddings are both C-hereditary and C-continuous, then
C-generating coincides with hereditary weak C-generating.



Preservation under subspaces, heredity – an example

Recall
We define a closure scheme CSeq as
CSeq(A,X ) := {x ∈ X : ∃S ⊆ X a sequence : S → x}.

Observation

A topological space is CSeq-generated iff it is
Fréchet–Urysohn, and it is CSeq-generated iff it is sequential.
CSeq is an additive closure scheme.
All embeddings are both CSeq-hereditary and CSeq-continuous
because convergence of sequences is absolute.
A space is Fréchet–Urysohn iff it is hereditarily sequential.
Fréchet–Urysohn spaces are closed under subspaces.
Sequential spaces are closed under closed or open subspaces.



Preservation under inductive constructions

Definition

A topology on X is inductively generated by a family of
mappings {fi : Xi → X}i∈I if it is the finest topology such that
all mappings fi are continuous.
A topology on X is hereditarily inductively generated by a
family of mappings {fi : Xi → X}i∈I if the subspace topology
of every Y ⊆ X is inductively generated by the family
{fi : f −1i [Y ]→ Y }i∈I .

Examples

Inductive generating: quotients, colimits.
Hereditary inductive generating: hereditary quotients (in
particular closed or open quotients), colimits with open
colimit maps (in particular sums).



Preservation under inductive constructions

Theorem
Let C be a closure scheme, X a space inductively generated by a
family of C-continuous mappings {fi : Xi → X}i∈I such that all
spaces Xi are C-generated. Then the space X is C-generated if at
least one of the following conditions holds.

1 The closure scheme C is transitive.
2 X is hereditarily inductively generated by the family
{fi : i ∈ I}.

Corollary
Let C be a closure scheme, X a space inductively generated by a
family of C-continuous mappings {fi : Xi → X}i∈I . If all spaces Xi
are weakly C-generated, then the space X is weakly C-generated.



Preservation under inductive constructions

Corollary
Let C be a closure scheme.

If embeddings of clopen subspaces are C-continuous, then
(weak) C-generating is preserved under topological sums.
If hereditarily (open, closed) quotient mappings are
C-continuous, then (weak) C-generating is preserved under
hereditary (open, closed) quotients.
If quotient mappings are C-continuous, then weak
C-generating is preserved under quotients.
If continuous mappings are C-continuous, then weak
C-generating is preserved under colimits.
If open continuous mappings are C-continuous, then
C-generating is preserved under colimits with open colimit
maps.



Preservation under inductive constructions – an example

Observation

A topological space is CSeq-generated iff it is
Fréchet–Urysohn, and it is CSeq-generated iff it is sequential.
CSeq is an additive closure scheme.
All embeddings are both CSeq-hereditary and CSeq-continuous
because convergence of sequences is absolute.
All continuous mappings are CSeq-continuous because
continuous mappings preserves convergence.
A space is Fréchet–Urysohn iff it is hereditarily sequential.
The class of Fréchet–Urysohn spaces is closed under
subspaces, sums, and hereditary quotients.
The class of sequential spaces is closed under closed or open
subspaces, sums, quotients, and colimits.



Relations between the closure schemes

Definition
Let C1, C2 be closure operators on a set X . We define

C1 ≤ C2 :⇐⇒ ∀A ⊆ X : C1(A) ⊆ C2(A).
Let C1, C2 be closure schemes. We define

C1 ≤ C2 :⇐⇒ ∀X ∈ Top : C1
X ≤ C2

X .

Observations

“Closure schemes form a complete lattice.” (But it is not even
a proper class.)
CId ≤ C ≤ cl for any closure scheme C.
C ≤ C for any closure scheme C.
C1 ≤ C2 =⇒ C1 ≤ C2 for any closure schemes C1, C2.



Relations between the closure schemes

Observation
Let C1, C2 be closure schemes. Let us consider the following
properties. It holds that 1 =⇒ 2 =⇒ 3.

1 C1 ≤ C2,
2 C1-generating at a point =⇒ C2-generating at a point,
3 C1-generating =⇒ C2-generating.

Proposition
Let C be a closure scheme, X a topological space, x ∈ X . If X is
weakly C-generated (at x) and Whyburn (at x), then it is
C-generated (at x).



Relations between the closure schemes on T2 spaces
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Relations between the closure schemes on T2 spaces

Example
Arens’ space is sequential but not Fréchet–Urysohn.
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Relations between the closure schemes on T2 spaces

Example
Reduced Arens’ space is strongly discretely generated and
discretely Whyburn because it contains only one non-isolated
point. It has also countable tightness but it is not pseudoradial.
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Relations between the closure schemes on T2 spaces

Example
(ω1 + 1) is radial and strongly discretely generated, but it is not
Whyburn and it does not have countable tightness.
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Relations between the closure schemes on T2 spaces

Example
There exists a first countable, locally countable, uncountable T3 space such
that every uncountable subset contains a countable subset with uncountable
closure (Simon, Tironi). After adjoining a point whose neighborhoods are
complements of countable closed sets, we get a T2 pseudoradial space of
countable tightness which is not sequential.
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Relations between the closure schemes on T2 spaces

Example
If we refine the topology of βω by {ω ∪ {p} : p ∈ βω \ ω}, we
obtain a strongly discretely generated space of countable tightness
that is neither pseudoradial nor weakly Whyburn.
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Relations between the closure schemes on T2 spaces

Example
Let p0 ∈ βω \ ω. If we refine the topology of βω by

{ω ∪ {p} : p ∈ βω \ (ω ∪ {p0})} ∪ {βω \ A : A ⊆ βω \ ω countable},
we obtain a discretely generated space that is not strongly discretely generated.
It is also neither pseudoradial nor weakly Whyburn.
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Relations between the closure schemes on T2 spaces

Example
Van Douwen’s maximal space is Whyburn but not weakly
discretely generated.
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Relations between the closure schemes on T2 spaces

Example
Van Douwen’s maximal space can be embedded into 2c. Hence, 2c
is weakly discretely generated but not discretely generated.
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Relations between the schemes under additional conditions

Theorems

Hausdorff locally compact spaces are weakly discretely
generated. (Dow, Tkachenko, Tkachuk, Wilson)
Hausdorff locally compact spaces of countable tightness are
strongly discretely generated. (Dow, Tkachenko, Tkachuk,
Wilson)
Preregular locally compact weakly Whyburn spaces are
pseudoradial. (Bella, Dow)
Preregular locally countably compact Whyburn spaces are
Fréchet–Urysohn. (Tkachuk, Yashchenko)



Relations between the schemes on T2 compact spaces

Fréchet–Urysohn,
discretely Whyburn,

Whyburn

��

// radial

��

��

sequential

��

// semiradial

��

countable tightness

��

weakly discretely Whyburn,
weakly Whyburn

��
strongly discretely generated

��

pseudoradial

discretely generated



Thank you for your attention.


