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Symmetries of Homogeneous Structures

Homogeneous structures

Definition
A structure S is (ultra)homogeneous if every isomorphism between finite
substructures extends to an automorphism of the entire structure.

Example
Fraissé classes Fraissé limits
Finite linear orders —  Rationals
Finite graphs —  Rado graph R
Finite graphs omitting K, —  K,-free graph
Finite metric spaces with rational dist. —  Rational Urysohn space U

And many more....
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Symmetries of Homogeneous Structures

Symmetries of Homogeneous Structures

Definition
Let S = (E,..) be an homogeneous structure and consider

Aut(S) = automorphisms of S

By “Symmetries”, we mean the overgroups G of Aut(S):

Aut(S) < G < Sym(S)
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Reducts
Reducts of the Rationals Q = (Q, <)

P. Cameron (76)

The closed subgroups of Sym(Q)
containing Aut(Q) (the reducts) are: Sym(Q)

o Aut(Q) ‘
o Betw(Q), the group of
automorphisms and Sep(Q)
anti-automorphisms. /

e Cycl(Q), the group of cycling Betw(Q)
automorphisms. \

Cycl(Q)

N4

o Sep(Q) generated by the previous Aut(Q
two groups.

o Sym(Q)
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Preserving Copies
Exercise
Iff : Q — Q € Sym(Q) preserves copies, then what can f be?
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Preserving Copies
Exercise

Iff : Q — Q € Sym(Q) preserves copies, then what can f be?

Definition

Let f : Q — Q € Sym(Q), and define
@ x isoftype OP if Vy)[x <y = f(x) <f(¥)]IA [y <x = f(y) < f(x)].
@ x is of type ROP if (Vy)[x <y = f(y) < f(x)|A\[y <x = f(y) > f(x)].
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Preserving Copies

Exercise
Iff : Q — Q € Sym(Q) preserves copies, then what can f be?

Definition

Let f : Q — Q € Sym(Q), and define
@ x isoftype OP if Vy)[x <y = f(x) <f(¥)]IA [y <x = f(y) < f(x)].
@ x is of type ROP if (Vy)[x <y = f(y) < f(x)|A\[y <x = f(y) > f(x)].

Proposition

Iff : Q — Q € Sym(Q) preserves copies, then:
(Vx) [x is OP or x is ROP]

Corollary

Iff : Q — Q € Sym(Q) preserves copies, then:
(Vx) [x is OP] or (Vx)[x is ROP]

Thus f is order preserving or reverse order preserving.
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Rationals

Preserving Copies

Q
Proof.
Case 1: U, N f '(Us) is scattered.

Uz

Ly
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Rationals

Preserving Copies

Q
Proof.
Case 1: U, N f '(Us) is scattered.
Claim: U, N £~ (Us(x) is empty!

Uz

Ly

Winter School 2015

&
Symmetries




Preserving Copies

Q Q
Proof.
Case 1: U, N f (Us(x)) is scattered. @1
Claim: Uy N £ (Ug(x)) is empty! ;

x

Else if there is such an x’, consider two copies:

flz)
G C Ugn f_l(Lf(x) N (x,x") €

Ci C U fﬁl(l_f(x) n [X,, OO) T

Then Go U {x'} U C; is a copy, but the image by
f has a largest element, a contradiction.

Similarly L, N f_l(Lf(X)) is empty, and thus x is Ly
ROP.

O

v
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Preserving Copies

Proof.

Case 1: U, N f (Us(x)) is scattered.
Claim: Uy N £ (Ug(x)) is empty!
Else if there is such an x’, consider two copies:

Co C U N (Lepy N (x,x')
Ci C U fﬁl(l_f(x) n [X,, OO)

Then Go U {x'} U C; is a copy, but the image by
f has a largest element, a contradiction.
Similarly Ly N f~!(L¢(x)) is empty, and thus x is
ROP.

Case 2: U, N f_l(Uf(X)) is NOT scattered.

In this case one shows x is OP. O

v

Ly
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Hypergraph of copies

Definition
Given a structure S, let

o [s denote the hypergraph of induced copies of S.

o Aut(l's) its automorphism group.
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Hypergraph of copies

Definition

Given a structure S, let
e [ s denote the hypergraph of induced copies of S.
o Aut(l's) its automorphism group.

Then Aut(S) < Aut(Ts) < Sym(S), so Aut(l's) is a symmetry.

Question
What is Aut(l's)? J
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Hypergraph of copies

Definition

Given a structure S, let
e [ s denote the hypergraph of induced copies of S.
o Aut(l's) its automorphism group.

Then Aut(S) < Aut(Ts) < Sym(S), so Aut(l's) is a symmetry.

Question
What is Aut(l's)?

Remark
Aut(Fg) = Betw(Q).
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K,-free graph H, = (V, E)

Theorem (Thomas (91))

There is no closed groups between Aut(H,) and Sym(H,)

o & = E DA
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Kp-free graph

K,-free graph H, = (V, E)

Theorem (Thomas (91))
There is no closed groups between Aut(H,) and Sym(H,)

Theorem
Aut(Ty,) = Aut(Hp)

=] 5
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Kp-free graph

Proof of Aut(ly,) = Aut(H,).

(Triangle-Free H3 = (V, E)) Let f : H3 — 3 preserve copies (and
conversely), and suppose wlog some edge (a, b) is mapped to a non edge.
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Kp-free graph

Proof of Aut(ly,) = Aut(H,).

(Triangle-Free H3 = (V, E)) Let f : H3 — 3 preserve copies (and
conversely), and suppose wlog some edge (a, b) is mapped to a non edge.
e Define a new graph H5 = (V, E’) by:

(x.y) € E' < (f(x), f(y)) € E

So X C Vis a copy in H3 iff it is a copy in Hj.
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Kp-free graph

Proof of Aut(ly,) = Aut(H,).

(Triangle-Free H3 = (V, E)) Let f : H3 — 3 preserve copies (and
conversely), and suppose wlog some edge (a, b) is mapped to a non edge.
e Define a new graph H; = (V, E’) by:
(. y) € B (f(x), f(y)) € E

So X C Vis a copy in H3 iff it is a copy in H5.
e Nowin H5: (1) AUBURU({a, b} is NOT a copy.

(2) AUBURU{a} IS a copy.

(3) AUBURU {b} IS a copy.
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Rado Graph

Rado Graph
Folklore

The Rado graph R is the (unique) countable graph with the property that:

For all finite disjoint U,V C R, there is a vertex x connected to all

vertices of U and none of V.

Definition

Let W (U, V) be the collection of all these witness x
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Basic Properties

Rado Graph Basic Properties

e Wr(U,V) is a copy of R.

Proof: Wr(UU U,V U V)= Wg(U,V)n Wx(U, V).
R

Wr(U,V)

Winter School 2015
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Rado Graph Basic Properties

Basic Properties

o Wgr(U, V) is a copy of R. L
Proof: Wr(UU U, V U V) = Wg(U, V)N Wg(U, V).
R

ON @ |

e R is universal: it embeds all finite (and countable) graphs.
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Rado Graph Basic Properties

Basic Properties

o Wgr(U, V) is a copy of R. L
Proof: Wr(UU U, V U V) = Wg(U, V)N Wg(U, V).
R

ON @ |

e R is universal: it embeds all finite (and countable) graphs.

@ R is unique (up to isomorphism).
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Rado Graph Basic Properties

Basic Properties

o Wgr(U, V) is a copy of R. L
Proof: Wr(UU U, V U V) = Wg(U, V)N Wg(U, V).
R

ON @ |

e R is universal: it embeds all finite (and countable) graphs.

@ R is unique (up to isomorphism).

@ R exists: Fraissé limit of all finite graphs.

Winter School 2015 Symmetries 11 /27



Folklore
R is (strongly) indivisible:

If R = AU B, then one of A or B IS the Rado graph.

o & = E DA
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Rado Graph Basic Properties

Folklore
R is (strongly) indivisible:
If R = AU B, then one of A or B IS the Rado graph.

Proof.

If A'is not Rado with bad pair U, V, then_Wig(U, V) C B. But
Wr(UU T,V UV) = Wg(U, V)N Wg(T,V).
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GELINEEL M Automorphism group Aut(RR)

Automorphism Group Aut(R)

@ R is homogeneous:

Any finite partial automorphism a : X — Y extends to a full

automorphism a.

O

R

Winter School 2015

Symmetries

13 / 27



GELINEEL M Automorphism group Aut(RR)

Automorphism Group Aut(R)

@ R is homogeneous:

Any finite partial automorphism a : X — Y extends to a full

automorphism a.

O

R

o Aut(R) is 1-transitive, not 2-transitive.
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Anti-Automorphisms
Call D(R) the group of automorphisms and anti-automorphisms.
=] 5 = E DAy




Rado Graph Reducts

Anti-Automorphisms

Call D(R) the group of automorphisms and anti-automorphisms.

Switching
For X C R, consider the new graph S(X) on the same vertex set as R,

but adjacencies between X and X€ are switched.

S(R) consists of all switching automorphisms, that is graph isomorphism
a: R — S(X) for some X.
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Rado Graph Reducts

Anti-Automorphisms

Call D(R) the group of automorphisms and anti-automorphisms.

Switching

For X C R, consider the new graph S(X) on the same vertex set as R,
but adjacencies between X and X€ are switched.

S(R) consists of all switching automorphisms, that is graph isomorphism
a: R — S(X) for some X.

Big Group
Call B(R), the big group, generated by D(R) and S(R).
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Rado Graph Reducts

S. Thomas (91)

The closed subgroups of Sym(R)
containing Aut(R) (the reducts) are: Sym(R)
e Aut(R)

@ D(R), the group of automorphisms
and anti-automorphisms. B(R)

e S(R), the group of switching /
automorphisms. D(R)

@ B(R), the group of switching \\
automorphisms and
anti-automorphisms.

e Sym(R)
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Rado Graph Reducts

Observation

o Aut(R) is I-transitive, not Sym(R)
2-transitive.

e S(R) is 2-transitive, not
3-transitive. B(R)

e D(R) is 2-transitive, not /
3-transitive.

AN

e B(R) is 3-transitive, not
4-transitive.

e Sym(R) is highly transitive.
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Rado Graph Reducts

Observation
e Aut(R) is 1-transitive, not Sym(R)
2-transitive.
e S(R) is 2-transitive, not
3-transitive.

B(
e D(R) is 2-transitive, not /
R)

3-transitive.

R)
AN
S(R)
/

D(
e B(R) is 3-transitive, not
4-transitive.
Aut(R
e Sym(R) is highly transitive. ut(R)
Cameron
Any overgroup of Aut(R) not contained in B(R) is highly transitive. J
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Question
What about Aut(I'r)?
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RECINEE M Hypergraph of Copies

Question
What about Aut(I'r)?

Definition
For S = (E,..) a relational structures, then X C E is called scattered (or
thin if it is does not contain a copy of S.
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RECINEE M Hypergraph of Copies

Question
What about Aut(I'r)?

Definition
For S = (E,..) a relational structures, then X C E is called scattered (or
thin if it is does not contain a copy of S.

Theorem

Any bijection f : X — X' between two scattered sets X and X' extends to
an automorphism of .

v
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RECINEE M Hypergraph of Copies

Question
What about Aut(I'r)?

Definition
For S = (E,..) a relational structures, then X C E is called scattered (or
thin if it is does not contain a copy of S.

Theorem

Any bijection f : X — X' between two scattered sets X and X' extends to
an automorphism of .

Corollary

Aut(T'R) is highly transitive, and thus cannot be any of the reducts.
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Proof.

Let f : X — X’ be a bijection between scattered sets.
Write V =, Vi, and list V\ X =< xp:n€w >.

Extend f to f = (U, fa such that for each n:
Q dom(f,)=C, 2V,

@ There is k(n) so that for all k > k(n) the type of xx over V, is the
same as f(x) over (V).
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RECINEE M Hypergraph of Copies

Proof.
(Cont'd) To show that it works, let R1 be a copy of R.
We show that f(R1) is also a copy.

We need to realize every type in f(Rl)

f
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RECINEE M Hypergraph of Copies

Finite Variations

Definition
o Aut( FR) =

{0 € Sym(R) :VE € Tg Ec and Eo~ ' € T}

o FAut(l'g) =

{o € Sym(R) : 3F finite YE € T (E\ F)o and (E\ F)o~t e Tr}

-} Aut*(l’R) =

{o € Sym(R) : VE € I'g 3F finite (E\ F)o and (E\ F)o~! € T}

Winter School 2015 Symmetries
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RECINEE M Hypergraph of Copies

Finite Variations

Definition
o Aut( FR) =

{0 € Sym(R) :VE € Tg Ec and Eo~ ' € T}
o FAut(l'g) =
{o € Sym(R) : 3F finite YE € T (E\ F)o and (E\ F)o~t e Tr}
o Aut*(Tr) =

{o € Sym(R) : VE € I'g 3F finite (E\ F)o and (E\ F)o~! € T}

Proposition
S(R) £ FAut(TRr), but S(R) < Aut*(T'R)
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S(R) £ FAut(Tx) J
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Rado Graph

S(R) £ FAut(Tz) J

[0 ay e« as o

N
v
Ky
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RECINEE M Hypergraph of Copies

S(R) % FAut(Tr) ]

Qe ay o as e
. -

1 < PR

1 AN e 1

1 s _.aT 1

1 - 1 1

.

bg, b] o b2 @ erereereeisiesiieiesiiieeaes
Co o Cl o Co o

@ VnVk < na,o bk and ¢, ~ by
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RECINEE M Hypergraph of Copies

S(R) £ FAut(T%) |
Qe al,o (1'2 .
boi ’ bl bzi ............................

@ VnVk < na,o bk and ¢, ~ by
@ VnE,:={ax:k>n}U{by}U{ck: k> n}isan edge of [».
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RECINEE M Hypergraph of Copies

S(R) £ FAut(Tr) |
S

@ VnVk < na,o bk and ¢, ~ by
@ VnE,:={ax:k>n}U{by}U{ck: k> n}isan edge of [».
@ S(C) is the Rado graph.
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RECINEE M Hypergraph of Copies

S(R) £ FAut(Tr) |
S

@ VnVk < na,o bk and ¢, ~ by
@ VnE,:={ax:k>n}U{by}U{ck: k> n}isan edge of [».
@ S(C) is the Rado graph.

e In S(C), b, is isolated in E,,.
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RECINEE M Hypergraph of Copies

S(R) £ FAut(Tr) |
S

@ VnVk < na,o bk and ¢, ~ by
@ VnE,:={ax:k>n}U{by}U{ck: k> n}isan edge of [».
@ S(C) is the Rado graph.

e In S(C), b, is isolated in E,,.
@ For any finite set F, choose n large enough so that E, = E, \ F.

Then E, is a copy in R, but E, is not a copy in S(C).
21/ 27



S(R) < Aut*(FR)
o T - = Ha




Rado Graph

S(R) < Aut*(FR)

J
S(X)

Y
U v
AN
D [
X

If S(E) ¢ #, then We(TZ UTL TR UTE) € X

o & E DA
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Rado Graph

S(R) < Aut*(FR)

J
S(X)

E\F
Y
3 v
[P
m [
X

U S(E) & H, then We(To T TT UTE) € X
F=TuV

o & E DA
Winter School 2015 Symmetries



Rado Graph

S(R) < Aut*(FR)

J
S(X)

iR\
e
T v U v
i |1 U Va
0/ 7 o8 Vi
X

U S(E) & H, then We(To T TT UTE) € X
F=TuV

WeUh uVauTL UL L0V uTh UG C X nWe(l uVa. Thu V)

o & E DA
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Rado Graph

S(R) < Aut*(FR)

J
S(X)

iR\
e
T v U v
i |1 U Va
0/ 7 o8 Vi
X

U S(E) & H, then We(To T TT UTE) € X
F=TuV

WeUh uVauTL UL L0V uTh UG C X nWe(l uVa. Thu V)
So Wex (U V)N(ENF)#0

o & E DA
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Hypergraph of copies

B(R) < Aut*(T'z)

Proof

The orbit of K4 under the action of B(R) is

N X
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Rado Graph RWVAWAIE)]

Hypergraph of copies

B(R) < Aut*(T'g)

Proof
The orbit of Ky under the action of B(R) is

N XL

But the orbit under Aut*(I'z) contains all graphs on 4 elements.
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Some Overgroups of Aut(R)

Sym(R)
Aut*(Tz)
Aut(rn).FAug

Aut(R)
o & = E DA
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Even more overgroups

Cameron and Tarzi have studied the following overgroups of R:

o & E DA
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RECINEE M  Overgroups

Even more overgroups

Cameron and Tarzi have studied the following overgroups of R:

a) Auti(R), the group of permutations which change only a finite number
of adjacencies;
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Rado Graph Overgroups

Even more overgroups

Cameron and Tarzi have studied the following overgroups of R:
a) Auti(R), the group of permutations which change only a finite number
of adjacencies;

b) Auty(R), the group of permutations which change only a finite number
of adjacencies at each vertex;
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Rado Graph Overgroups

Even more overgroups

Cameron and Tarzi have studied the following overgroups of R:

a) Auti(R), the group of permutations which change only a finite number
of adjacencies;

b) Auty(R), the group of permutations which change only a finite number
of adjacencies at each vertex;

c) Aut3(R), the group of permutations which change only a finite number
of adjacencies at all but finitely many vertices;

v
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Sym(R)

Aut*(H)
F.-‘l'u,f.a{-?'f:l -"-_1
7 Aut() B(R)
A‘iLﬁ;{R) :;Ir B ‘I.""s. _t"’..’ \-"'\_
L Aun(R) DR S(R)
: : A ] \__‘..\
rsgmmy T

C Aut(R)
(1)
o & = E DA
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Conclusion

Question
o What about the automorphism group of the neighbouring filter
F(R)?
[ F(R) = the filter generated by the (open or closed) neighbourhoods
inR |
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Conclusion

Question
o What about the automorphism group of the neighbouring filter
F(R)?
[ F(R) = the filter generated by the (open or closed) neighbourhoods
inR |

o What about the rational Urysohn space, random partial order, or
other homogeneous structures?
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