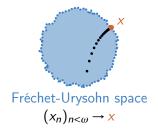
Radality and compactifications

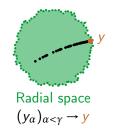
Robert Leek DPhil candidate, University of Oxford robert.leek@maths.ox.ac.uk www.maths.ox.ac.uk/people/profiles/robert.leek

30th January 2014

Part I

Internal characterisation of radiality

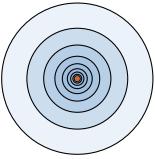




X is Fréchet-Urysohn at x if whenever $x \in \overline{A}$, there exists a sequence $(x_n)_{n < \omega}$ in A that converges to x.

Definition

Y is radial at a point y if whenever $y \in \overline{B}$, there exists a *transfinite* sequence $(y_{\alpha})_{\alpha < \gamma}$ in B, for some ordinal γ , that converges to y.

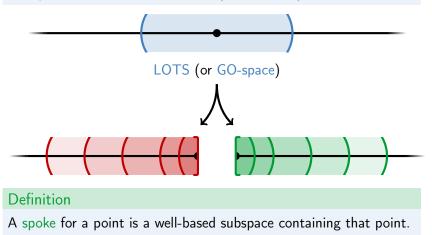


First countable space

Definition

A point in X is said to be well-based if it has a well-ordered neighbourhood base with respect to \supseteq .

LOTS := Linearly-Ordered Topological Space GO-space := Generalised-Ordered space = Subspaces of LOTS



A collection of spokes $\mathscr{S} = (S_i)_{i \in I}$ for a point x is a spoke system for x if

$$\mathscr{B} := \left\{ \bigcup_{i \in I} B_i : \forall i \in I, B_i \in \mathcal{N}_x^{S_i} \right\}$$

is a neighbourhood base for x.

Theorem

Every point with a spoke system is radial.

Proof.

Let $(S_i)_{i \in I}$ be a spoke system for x and let $x \in \overline{A}$. If for all $i \in I, x \notin \overline{A \cap S_i}^{S_i}$, then pick $U_i \in \mathcal{N}_x^{S_i}$ such that $A \cap U_i = \emptyset$. Then $U := \bigcup_{i \in I} U_i$ is a neighbourhood of x missing A, which is a contradiction. Thus $x \in \overline{A \cap S_i}^{S_i}$ for some $i \in I$, so since S_i is well-based at x, we can find a convergent transfinite sequence inside $A \cap S_i$.

A transfinite sequence $(x_{\alpha})_{\alpha<\lambda}$ converges strictly to a point x if it converges to that point and x is not in the closure of any initial segment; that is, $x \notin \overline{\{x_{\alpha} : \alpha < \beta\}}$, for all $\beta < \lambda$.

Lemma

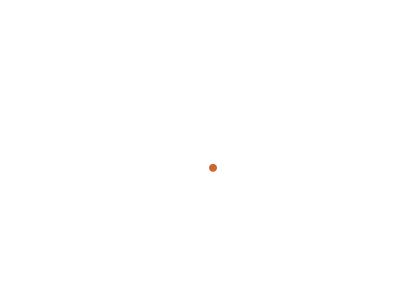
If X is radial at x and $x \in \overline{A}$, then there exists an injective, transfinite sequence in A that converges strictly to x.

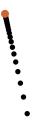
Lemma

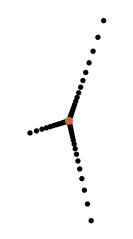
Let $(x_{\alpha})_{\alpha < \gamma}$ be an injective transfinite sequence that converges strictly to x. Then $S := \{x\} \cup \{x_{\alpha} : \alpha < \gamma\}$ is a spoke for x.

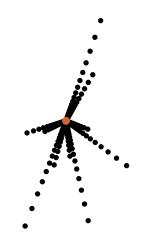
Proof.

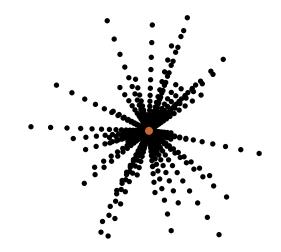
 $\{\{x\} \cup \{x_{\alpha} : \alpha \in [\beta, \gamma)\} : \beta < \gamma\}$ is a neighbourhood base for x with respect to S.

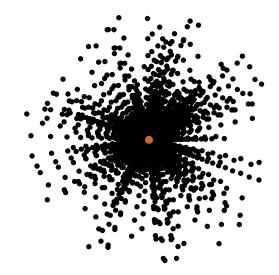


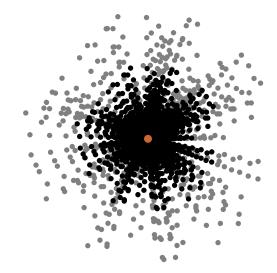


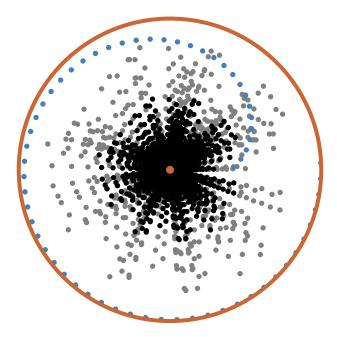












Theorem

For a point x in a topological space X, the following are equivalent:

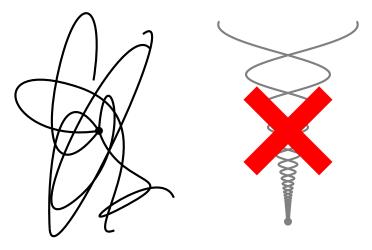
- 1. X is radial at x.
- 2. X has a spoke system $(S_i)_{i \in I}$ at x such that for distinct $i, j \in I, x \notin \overline{(S_i \cap S_j) \setminus \{x\}}$.

Proof.

If X is radial at x and not isolated, define

 $\mathcal{T} := \{f : \lambda \to X \setminus \{x\} : \lambda \le |X|, f \text{ is injective and } f \to x \text{ strictly} \}$ $\mathcal{A} := \{\mathcal{F} \subseteq \mathcal{A} : \forall f, g \in \mathcal{F} \text{ distinct}, f^{-1}[\operatorname{ran}(g)] \text{ is bdd. in } \operatorname{dom}(f) \}$

By Zorn's lemma, pick a maximal $\mathscr{F} \in \mathscr{A}$ and define for all $f \in \mathscr{F}, Y_f := \{x\} \cup \operatorname{ran}(f)$. Then by maximality, $(S_f)_{f \in \mathscr{F}}$ is a spoke system for x. Moreover, for all $f, g \in \mathscr{F}$ distinct, $x \notin \overline{(S_f \cap S_g) \setminus \{x\}}$ by strict convergence and since $\mathscr{F} \in \mathscr{A}$.



For more information on this part, see: http://arxiv.org/abs/1401.6519

Part II

Applications

Lemma

If X is a compact Hausdorff space and $x \in X$ is radial, then x has a closed spoke system $\mathscr{S} = (S_i)_{i \in I}$; i.e., S_i is closed in X for each $i \in I$.

Proof.

Let $\mathscr{S} = (S_f)_{f \in \mathscr{F}}$ be as in the proof of the existence of a spoke system for a radial point. Define $T_f := \{x\} \cup \bigcup_{\alpha \in \text{dom}(f)} \overline{f[\alpha]}$ for each $f \in \mathscr{F}$. Then $\{T_f \setminus \overline{f[\alpha]} : \alpha \in \text{dom}(f)\}$ is a neighbourhood base for x with respect to x. Also, T_f is compact and hence closed.

From now on, assume X is a non-compact, locally compact Hausdorff space.

Definition

The one-point compactification of X is denoted by αX , with the point at infinity denoted by \star .

Lemma

If X is a space, $Y \subseteq X$ is open and radial and X is radial on $X \setminus Y$, then X is radial.

Lemma

Radiality is preserved under closed (or even pseudo-open) images.

Corollary

If X is radial, then X has a radial compactification if and only if αX is radial at \star .

The cardinal \mathfrak{a} is the smallest size of an almost-disjoint family on ω . Note that $\aleph_1 \leq \mathfrak{a} \leq \mathfrak{c}$.

Proposition

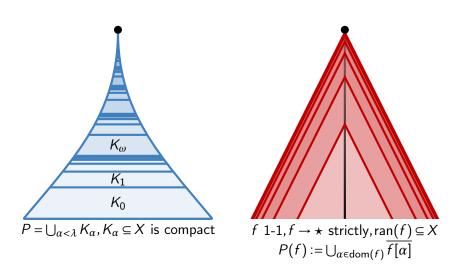
Let \mathscr{A} be an almost-disjoint family on ω and consider the Moore-Mrowka space $\Psi(\mathscr{A})$.

- $\Psi(\mathscr{A})$ is first-countable.
- If \mathscr{A} is maximal then $\alpha \Psi(\mathscr{A})$ is not radial at \star .
- If |𝔄| < α, (more generally, 𝔄 is nowhere-mad), then αΨ(𝔄) is Fréchet-Urysohn.

If $P \subseteq X$ is a closed, non-compact subspace which is an ascending union of compact subsets, we say that P is a *path to infinity*. We denote the collection of these by $\mathbf{P}^{\infty}(X)$.

Lemma

 $P \subseteq X$ is a path to infinity if and only if $P \cup \{\star\}$ is a closed spoke of \star in αX .



Theorem

The following are equivalent:

- 1. αX is radial at \star .
- 2. For every $A \subseteq X$ with non-compact closure, an ascending union $(K_{\alpha})_{\alpha < \lambda}$ of compact subsets of X such that $K_{\alpha} = \overline{A \cap K_{\alpha}}$ for all $\alpha < \lambda$ and $\bigcup_{\alpha < \lambda} K_{\alpha} \in \mathbf{P}^{\infty}(X)$.
- 3. For all $C \in \prod_{P \in \mathbf{P}^{\infty}(X)} \mathcal{K}(P), \bigcup_{P \in \mathbf{P}^{\infty}(X)} (P \setminus C(P))$ has co-compact interior in X.

Proof.

For the equivalence of 1 and 2: every path to infinity gives rise to a transfinite sequence and $P(f) \in \mathbf{P}^{\infty}(X)$ for any injective transfinite sequence f converging strictly to \star . For the equivalence of 1 and 3: use the equivalence of radiality and existence of closed spoke systems. Condition 3 is precisely saying that the sets generated from our spokes are indeed neighbourhoods (it is easily seen that they form a network).

Corollary

If αX is radial at \star , then every closed, non-compact subset of X contains a path to infinity.

Theorem

If αX is radial at \star , then every compactification of X with finite remainder is radial at every point in the remainder.

Proof.

Suppose that γX is a finite compactification of X and note that $\alpha X \cong \gamma X / (\gamma X \setminus X)$. If $f : \lambda \to X$ doesn't contain a subsequence converging to a point in $\gamma X \setminus X$, then recursively pick neighbourhoods of those points missing a tail of a subsequence of f. Gluing these neighbourhoods together gives a neighbourhood of $\gamma X \setminus X$, which will give you the required contradiction.

A family $\mathcal{T} \subseteq [\omega]^{\aleph_0}$ is called a *tower* if it is well-ordered with respect to \supseteq^* . Such a tower is called *inextendible* if it has no infinite pseudointersection; that is, there is no infinite $P \subseteq \omega$ such that $P \subseteq^* \mathcal{T}$ for all $T \in \mathcal{T}$. The tower number t is the least size of an inextendible tower. Note that $\aleph_1 \leq t \leq c$.

Theorem

Assume αX is radial at \star and let γX be a compactification of X such that either $\gamma X \setminus X$ is countable or X is countable and $|\gamma X| < \mathfrak{t}$. Then for every $A \subseteq X$ with non-compact closure, there exists a transfinite sequence in A that converges to some point in A. Moreover, if both X is sequential (= pseudoradial) and $\gamma X \setminus X$ is sequential / pseudoradial, then γX is sequential / pseudoradial.

Proof.

Use a similar argument as above for finite remainders.

Now let X be a Stone space (compact, Hausdorff, 0-dimensional).

Definition

If \mathscr{B} is a Boolean algebra and \mathscr{U} is an ultrafilter on \mathscr{B} (the set of these is denoted by $\mathbf{S}(\mathscr{B})$), then a subfilter $\mathscr{F} \subseteq \mathscr{U}$ is called a *lineariser* of \mathscr{U} if $\mathscr{U}/\mathscr{F} = \{[u]_{\mathscr{F}} : u \in \mathscr{U}\}$ is *well-based* in \mathscr{B}/\mathscr{F} (has a well-ordered neighbourhood base with respect to \mathscr{B}/\mathscr{F}). The collection of these is denoted $\mathbf{L}(\mathscr{U})$.

Definition

For a filter ${\mathscr F}$ on a Boolean algebra ${\mathscr B}$, define

 $\mathcal{C}_{\mathscr{F}} := \{\mathscr{U} \in \mathsf{S}(\mathscr{B}) : \mathscr{F} \subseteq \mathscr{U}\}$

Lemma

Let \mathscr{B} be a Boolean algebra, $\mathscr{A} \subseteq \mathbf{S}(\mathscr{B})$ be given. Then $\overline{\mathscr{A}} = C_{\cap \mathscr{A}}$. In particular, $C_{\mathscr{F}}$ is closed for all filters \mathscr{F} on \mathscr{B} .

Theorem

Let \mathscr{B} be a Boolean algebra, $\mathscr{U} \in S(\mathscr{B})$ be given. Then the following are equivalent:

- 1. $S(\mathscr{B})$ is radial at \mathscr{U} .
- 2. $\forall \mathscr{A} \subseteq \mathbf{S}(\mathscr{B})$, if $\cap \mathscr{A} \subseteq \mathscr{U}$ then there exists $\mathscr{F} \in \mathbf{L}(\mathscr{U})$ such that $\cap (\mathscr{A} \uparrow \mathscr{F}) \subseteq \mathscr{U}$, where $\mathscr{A} \uparrow \mathscr{F} := \{\mathscr{V} \in \mathscr{A} : \mathscr{F} \subseteq \mathscr{V}\} = \mathscr{A} \cap C_{\mathscr{F}}$.
- 3. For all $B \in {}^{L(\mathcal{U})}\mathcal{U}$, there exists $b \in \mathcal{B}$ such that $[b] \subseteq \bigcup_{\mathscr{F} \in L(\mathcal{U})} C_{\mathscr{F}} \cap [B(\mathscr{F})].$

Proof.

For the equivalence of 1 and 2: $(C_{\mathscr{F}})_{\mathscr{F}\in L(\mathscr{U})}$ is a spoke system when \mathscr{U} is radial and use previous proof of radiality following from the existence of a spoke system. For the equivalence of 1 and 3: use the theorem for radiality at \star together with $S(\mathscr{B}) \setminus \{\mathscr{U}\} \cong S(\mathscr{B})$ when \mathscr{U} is not isolated (i.e. fixed).