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Part I

Internal characterisation of radiality



Fréchet-Urysohn space
(xn)n<ω→ x

x

Radial space
(yα)α<γ→ y

y

Definition
X is Fréchet-Urysohn at x if whenever x ∈A, there exists a
sequence (xn)n<ω in A that converges to x .

Definition
Y is radial at a point y if whenever y ∈B , there exists a transfinite
sequence (yα)α<γ in B , for some ordinal γ, that converges to y .



First countable space Well-based space

Definition
A point in X is said to be well-based if it has a well-ordered
neighbourhood base with respect to ⊇.



Definition
LOTS := Linearly-Ordered Topological Space
GO-space := Generalised-Ordered space = Subspaces of LOTS

LOTS (or GO-space)

Definition
A spoke for a point is a well-based subspace containing that point.



Definition
A collection of spokes S = (Si )i∈I for a point x is a spoke system
for x if

B :=
{⋃

i∈I
Bi :∀i ∈ I ,Bi ∈N Si

x

}
is a neighbourhood base for x .

Theorem
Every point with a spoke system is radial.

Proof.
Let (Si )i∈I be a spoke system for x and let x ∈A. If for all
i ∈ I ,x ∉A∩Si

Si , then pick Ui ∈N
Si

x such that A∩Ui =;. Then
U :=⋃

i∈I Ui is a neighbourhood of x missing A, which is a
contradiction. Thus x ∈A∩Si

Si for some i ∈ I , so since Si is
well-based at x, we can find a convergent transfinite sequence
inside A∩Si .



Definition
A transfinite sequence (xα)α<λ converges strictly to a point x if it
converges to that point and x is not in the closure of any initial
segment; that is, x ∉ {xα :α<β}, for all β<λ.

Lemma
If X is radial at x and x ∈A, then there exists an injective,
transfinite sequence in A that converges strictly to x.

Lemma
Let (xα)α<γ be an injective transfinite sequence that converges
strictly to x. Then S := {x}∪ {xα :α< γ} is a spoke for x.

Proof.
{{x}∪ {xα :α ∈ [β,γ)} :β< γ} is a neighbourhood base for x with
respect to S.



















Theorem
For a point x in a topological space X , the following are equivalent:

1. X is radial at x.
2. X has a spoke system (Si )i∈I at x such that for distinct

i , j ∈ I ,x ∉ (Si ∩Sj)\{x}.

Proof.
If X is radial at x and not isolated, define

T := {f :λ→X \{x} :λ≤ |X |, f is injective and f → x strictly}

A := {F ⊆A :∀f ,g ∈F distinct, f −1[ran(g)] is bdd. in dom(f )}

By Zorn’s lemma, pick a maximal F ∈A and define for all
f ∈F ,Yf := {x}∪ ran(f ). Then by maximality, (Sf )f ∈F is a spoke
system for x. Moreover, for all f ,g ∈F distinct, x ∉ (Sf ∩Sg )\{x}
by strict convergence and since F ∈A .



For more information on this part, see:
http://arxiv.org/abs/1401.6519

http://arxiv.org/abs/1401.6519


Part II

Applications



Lemma
If X is a compact Hausdorff space and x ∈X is radial, then x has a
closed spoke system S = (Si )i∈I ; i.e., Si is closed in X for each
i ∈ I .
Proof.
Let S = (Sf )f ∈F be as in the proof of the existence of a spoke
system for a radial point. Define Tf := {x}∪⋃

α∈dom(f ) f [α] for each
f ∈F . Then {Tf \f [α] :α ∈ dom(f )} is a neighbourhood base for x
with respect to x. Also, Tf is compact and hence closed.

From now on, assume X is a non-compact, locally compact
Hausdorff space.

Definition
The one-point compactification of X is denoted by αX , with the
point at infinity denoted by ?.



Lemma
If X is a space, Y ⊆X is open and radial and X is radial on X \Y ,
then X is radial.

Lemma
Radiality is preserved under closed (or even pseudo-open) images.

Corollary

If X is radial, then X has a radial compactification if and only if
αX is radial at ?.



Definition
The cardinal a is the smallest size of an almost-disjoint family on
ω. Note that ℵ1 ≤ a≤ c.

Proposition

Let A be an almost-disjoint family on ω and consider the
Moore-Mrowka space Ψ(A ).

Ï Ψ(A ) is first-countable.
Ï If A is maximal then αΨ(A ) is not radial at ?.
Ï If |A | < a, (more generally, A is nowhere-mad), then αΨ(A )
is Fréchet-Urysohn.



Definition
If P ⊆X is a closed, non-compact subspace which is an ascending
union of compact subsets, we say that P is a path to infinity. We
denote the collection of these by P∞(X ).

Lemma
P ⊆X is a path to infinity if and only if P ∪ {?} is a closed spoke of
? in αX.



K0

K1

Kω

P =⋃
α<λKα,Kα ⊆X is compact f 1-1, f →? strictly,ran(f )⊆X

P(f ) :=⋃
α∈dom(f ) f [α]



Theorem
The following are equivalent:
1. αX is radial at ?.
2. For every A⊆X with non-compact closure, an ascending union

(Kα)α<λ of compact subsets of X such that Kα =A∩Kα for
all α<λ and

⋃
α<λKα ∈P∞(X ).

3. For all C ∈∏
P∈P∞(X )K (P),

⋃
P∈P∞(X )(P\C (P)) has

co-compact interior in X .

Proof.
For the equivalence of 1 and 2: every path to infinity gives rise to a
transfinite sequence and P(f ) ∈P∞(X ) for any injective transfinite
sequence f converging strictly to ?. For the equivalence of 1 and 3:
use the equivalence of radiality and existence of closed spoke
systems. Condition 3 is precisely saying that the sets generated
from our spokes are indeed neighbourhoods (it is easily seen that
they form a network).



Corollary

If αX is radial at ?, then every closed, non-compact subset of X
contains a path to infinity.

Theorem
If αX is radial at ?, then every compactification of X with finite
remainder is radial at every point in the remainder.

Proof.
Suppose that γX is a finite compactification of X and note that
αX ∼= γX/(γX \X ). If f :λ→X doesn’t contain a subsequence
converging to a point in γX \X, then recursively pick
neighbourhoods of those points missing a tail of a subsequence of
f . Gluing these neighbourhoods together gives a neighbourhood of
γX \X, which will give you the required contradiction.



Definition
A family T ⊆ [ω]ℵ0 is called a tower if it is well-ordered with
respect to ⊇∗. Such a tower is called inextendible if it has no
infinite pseudointersection; that is, there is no infinite P ⊆ω such
that P ⊆∗ T for all T ∈T . The tower number t is the least size of
an inextendible tower. Note that ℵ1 ≤ t≤ c.

Theorem
Assume αX is radial at ? and let γX be a compactification of X
such that either γX \X is countable or X is countable and |γX | < t.
Then for every A⊆X with non-compact closure, there exists a
transfinite sequence in A that converges to some point in A.
Moreover, if both X is sequential (= pseudoradial) and γX \X is
sequential / pseudoradial, then γX is sequential / pseudoradial.

Proof.
Use a similar argument as above for finite remainders.



Now let X be a Stone space (compact, Hausdorff, 0-dimensional).

Definition
If B is a Boolean algebra and U is an ultrafilter on B (the set of
these is denoted by S(B)), then a subfilter F ⊆U is called a
lineariser of U if U /F = {[u]F : u ∈U } is well-based in B/F (has
a well-ordered neighbourhood base with respect to B/F ). The
collection of these is denoted L(U ).

Definition
For a filter F on a Boolean algebra B, define

CF := {U ∈S(B) :F ⊆U }

Lemma
Let B be a Boolean algebra, A ⊆S(B) be given. Then A =C⋂

A .
In particular, CF is closed for all filters F on B.



Theorem
Let B be a Boolean algebra, U ∈S(B) be given. Then the
following are equivalent:
1. S(B) is radial at U .
2. ∀A ⊆S(B), if

⋂
A ⊆U then there exists F ∈L(U ) such that⋂

(A ↑F )⊆U , where A ↑F := {V ∈A :F ⊆ V } =A ∩CF .
3. For all B ∈ L(U )U , there exists b ∈B such that

[b]⊆⋃
F∈L(U )CF ∩ [B(F )].

Proof.
For the equivalence of 1 and 2: (CF )F∈L(U ) is a spoke system
when U is radial and use previous proof of radiality following from
the existence of a spoke system. For the equivalence of 1 and 3:
use the theorem for radiality at ? together with S(B)\{U } ∼=S(B)
when U is not isolated (i.e. fixed).


