Finite chain condition and packing completeness for ideals on countable groups

Taras Banakh and Nadya Lyaskovska

37-th Winter School, Hejnice 2009

Definition
A family \mathcal{I} of subsets of a group G is ideal if

- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- I is closed under finite unions.

Such an ideal \mathcal{I} is called invariant if

$$
\forall A \in \mathcal{I} \forall x \in G x+A \in \mathcal{I} .
$$

Trivial examples: $\mathcal{I}=\{\emptyset\}, \mathcal{I}=[G]^{<\omega}$. Nontrivial Examples: Ask Jana Flašková.

Definition

A family \mathcal{I} of subsets of a group G is ideal if

- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called invariant if

$$
\forall A \in \mathcal{I} \forall x \in G x+A \in \mathcal{I} .
$$

Trivial examples: $\mathcal{I}=\{\emptyset\}, \mathcal{I}=[G]^{<\omega}$.
Nontrivial Examples: Ask Jana Flašková.

Definition

A family \mathcal{I} of subsets of a group G is ideal if

- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called invariant if

$$
\forall A \in \mathcal{I} \forall x \in G x+A \in \mathcal{I} .
$$

Trivial examples: $\mathcal{I}=\{\emptyset\}, \mathcal{I}=[G]^{<\omega}$.
Nontrivial Examples: Ask Jana Flašková.

Definition

A family \mathcal{I} of subsets of a group G is ideal if

- $G \notin \mathcal{I}$;
- \mathcal{I} is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called invariant if

$$
\forall A \in \mathcal{I} \forall x \in G x+A \in \mathcal{I} .
$$

Trivial examples: $\mathcal{I}=\{\emptyset\}, \mathcal{I}=[G]^{<\omega}$. Nontrivial Examples: Ask Jana Flašková.

Classical examples of ideals on \mathbb{R} :

- \mathcal{N} the ideal of Lebesgue null sets;
- $\mathcal{U N}$ the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- $\mathcal{U} \mathcal{M}$ the ideal of universally meager subsets;
- $\mathcal{U S}$ the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G=\mathbb{Z}$?

Classical examples of ideals on \mathbb{R} :

- \mathcal{N} the ideal of Lebesgue null sets;
- $\mathcal{U N}$ the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- $\mathcal{U} \mathcal{M}$ the ideal of universally meager subsets;
- US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G=\mathbb{Z}$?

Classical examples of ideals on \mathbb{R} :

- \mathcal{N} the ideal of Lebesgue null sets;
- $\mathcal{U N}$ the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- $\mathcal{U} \mathcal{M}$ the ideal of universally meager subsets;
- $\mathcal{U S}$ the ideal of universally small subsets.

Classical examples of ideals on \mathbb{R} :

- \mathcal{N} the ideal of Lebesgue null sets;
- $\mathcal{U N}$ the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- $\mathcal{U M}$ the ideal of universally meager subsets;
- $\mathcal{U S}$ the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G=\mathbb{Z}$?

The answer is easy for the first two ideals: Just take any Banach (=shift-invariant finitely additive probability) measure μ on G and consider the ideal:

- \mathcal{N}_{μ} of null subsets of G with respect to the measure μ. Such ideals are important because of

Theorem
Each countably generated invariant ideal \mathcal{I} on a countable abelian group G lies in the ideal \mathcal{N}_{μ} for a suitable Banach measure μ.

The intersection of all null ideals gives the ideal

- $\mathcal{U N}=\bigcap_{\mu} \mathcal{N}_{\mu}$ of universally null subsets of G.

So we get the inclusion:

$$
\mathcal{U} \mathcal{N}=\bigcap_{\mu} \mathcal{N}_{\mu} \subset \bigcup_{\mu} \mathcal{N}_{\mu}
$$

Note that the latter union is not at ideal in G and coincides with the union of all invariant ideals on G !
Question: What about the ideal \mathcal{M} of meager sets?
What can be understood under "nowhere dense" subsets of G (for example, in case $G=\mathbb{Z}$)?

The intersection of all null ideals gives the ideal

- $\mathcal{U N}=\bigcap_{\mu} \mathcal{N}_{\mu}$ of universally null subsets of G.

So we get the inclusion:

$$
\mathcal{U N}=\bigcap_{\mu} \mathcal{N}_{\mu} \subset \bigcup_{\mu} \mathcal{N}_{\mu}
$$

Note that the latter union is not at ideal in G and coincides with the union of all invariant ideals on G !
Question: What about the ideal \mathcal{M} of meager sets?
What can be understood under "nowhere dense" subsets of G (for example, in case $G=\mathbb{Z}$)?

Large subsets of groups

A subset $A \subset G$ is large if it belongs to no invariant ideal on G. This happens if and only if $F+A=G$ for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem
A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A)>0$ for every invariant measure μ on G. So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on G and consists of all non-large subsets.

Large subsets of groups

A subset $A \subset G$ is large if it belongs to no invariant ideal on G. This happens if and only if $F+A=G$ for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem
A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A)>0$ for every invariant measure μ on G.
So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on G and
consists of all non-large subsets.

Large subsets of groups

A subset $A \subset G$ is large if it belongs to no invariant ideal on G. This happens if and only if $F+A=G$ for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem
A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A)>0$ for every invariant measure μ on G.
So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on G and consists of all non-large subsets.

By the way, the following intriguing problem concerning large sets is still open:
Problem (Ellis)
Is it true that for each large subset $A \subset \mathbb{Z}$ the difference $A-A$ is a neighborhood of zero in some totally bounded group topology on \mathbb{Z}.

Small subsets in groups

Definition
A subset A of a group G is small if for every large set $L \subset G$ the difference $L \backslash A$ is large.

Theorem
For a subset A of a countable abelian group G TFAE:

1. A is small;
2. for every finite $F \subset G$ the set $G \backslash(F+A)$ is large;
3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

An invariant topology on G is totally bounded if each open
non-empty subset of G is large.

Small subsets in groups

Definition

A subset A of a group G is small if for every large set $L \subset G$ the difference $L \backslash A$ is large.
Theorem
For a subset A of a countable abelian group G TFAE:

1. A is small;
2. for every finite $F \subset G$ the set $G \backslash(F+A)$ is large;
3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

An invariant topology on G is totally bounded if each open non-empty subset of G is large.

Thus: small sets are exactly nowhere dense subsets in suitable totally bounded topologies.
It follows from the defintion that the family \mathcal{S} of small subsets of a group is an invariant ideal. This ideal relates to the other ideals as follows:

$$
\mathcal{U N} \subset \mathcal{S} \subset \bigcup_{\mu} \mathcal{N}_{\mu}
$$

Question: What can be understood by universally small subset?
Hint: We need a counterpart of the countable chain condition for ideals in countable groups.

Packing index

Given a subset $A \subset G$ consider the cardinal

$$
\operatorname{pack}(A)=\sup \left\{|B|: B \subset G \quad\{b+A\}_{b \in B} \text { is disjoint }\right\}
$$

called the packing index of A.
Example: $\operatorname{pack}(2 \mathbb{Z})=2$.

CH for packing indexes

Problem (Omiljanowski)
Is it true that the packing index pack(A) of a Borel subset of \mathbb{R} is either at most countable or else equal to c .
(This is true if A is σ-compact.)

I-packing index

Let \mathcal{I} is an ideal of subsets of a group.
We define a family \mathcal{A} of subsets of G to be \mathcal{I}-disjoint if
$A \cap A^{\prime} \in \mathcal{I}$ for any two distinct sets $A, A^{\prime} \in \mathcal{A}$.
If $\mathcal{I}=\{\emptyset\}$ (resp. $\mathcal{I}=[G]^{<\omega}$), then \mathcal{I}-disjoint is the same as (almost) disjoint in the usual sense.
Introducing an ideal parameter in the definition of a packing index, we obtain the notion of the \mathcal{I}-packing index

$$
\mathcal{I}-\operatorname{pack}(A)=\sup \left\{|B|: B \subset G\{b+A\}_{b \in B} \text { is } \mathcal{I} \text {-disjoint }\right\}
$$

The packing completeness of ideals

Definition

An ideal \mathcal{I} on G is pack-complete if each subset $A \subset G$ with \mathcal{I} - $\operatorname{pack}(A) \geq \aleph_{0}$ belongs to \mathcal{I}.

So, the packing completeness can be thought as a countepart of ccc-property for ideals on countable groups.

Examples of packing complete ideals:

The following ideals are packing complete:

- \mathcal{N}_{μ} for every invariant measure μ on G;
- $\mathcal{U N}=\bigcap_{\mu} \mathcal{N}_{\mu}$;
- \mathcal{S}, the ideal of small subsets of a countable abelian group G.

The packing completion of an ideal

Theorem

For every ideal \mathcal{I} on a countable abelian group G the intersection $\tilde{\mathcal{I}}$ of all packing complete ideals that contain \mathcal{I} is a well-defined packing complete ideal called the packing completion of \mathcal{I}. It is equal to the union

$$
\tilde{\mathcal{I}}=\bigcup_{\alpha<\omega_{1}} \mathcal{I}_{\alpha}
$$

where $\mathcal{I}_{0}=\mathcal{I}$ and \mathcal{I}_{α} is the ideal generated by all subsets with infinite $\mathcal{I}_{<\alpha}$-packing index.

The packing completion $\mathcal{U S}$ of the empty ideal $\mathcal{I}=\{\emptyset\}$ is the smallest packing complete ideal. So, we get the chain of packing complete ideals:

$$
\mathcal{U S} \subset \mathcal{U N} \subset \mathcal{S} \subset \bigcup_{\mu} \mathcal{N}_{\mu}
$$

The last two inclusions cannot be reversed.

Problem

1. Is $\mathcal{U S} \neq \mathcal{U N}$?
2. Find a combinatorial characterization of subsets belonging to the ideal $\mathcal{U S}$.
3. What is the descriptive complexity of the ideals $\mathcal{U S}$ and $\mathcal{U N}$?

Thank you!

