Finite chain condition and packing completeness for ideals on countable groups

Taras Banakh and Nadya Lyaskovska

37-th Winter School, Hejnice 2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A family \mathcal{I} of subsets of a group G is *ideal* if

- ► *G* ∉ *I*;
- I is closed under taking subsets;
- I is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

 $\forall A \in \mathcal{I} \ \forall x \in G \ x + A \in \mathcal{I}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

A family \mathcal{I} of subsets of a group G is *ideal* if

- ► *G* ∉ *I*;
- I is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \ \forall x \in G \ x + A \in \mathcal{I}.$$

A family \mathcal{I} of subsets of a group G is *ideal* if

- ► *G* ∉ *I*;
- I is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \ \forall x \in G \ x + A \in \mathcal{I}.$$

A family \mathcal{I} of subsets of a group G is *ideal* if

- ► *G* ∉ *I*;
- I is closed under taking subsets;
- \mathcal{I} is closed under finite unions.

Such an ideal \mathcal{I} is called *invariant* if

$$\forall A \in \mathcal{I} \ \forall x \in G \ x + A \in \mathcal{I}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

- N the ideal of Lebesgue null sets;
- ► UN the ideal of universally null sets;
- \mathcal{M} the ideal of meager subsets;
- ▶ UM the ideal of universally meager subsets;
- ▶ US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?

- N the ideal of Lebesgue null sets;
- ► UN the ideal of universally null sets;
- *M* the ideal of meager subsets;
- ► UM the ideal of universally meager subsets;
- ▶ US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?

- N the ideal of Lebesgue null sets;
- ► UN the ideal of universally null sets;
- *M* the ideal of meager subsets;
- ► UM the ideal of universally meager subsets;
- ► US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?

- N the ideal of Lebesgue null sets;
- ► UN the ideal of universally null sets;
- *M* the ideal of meager subsets;
- ► UM the ideal of universally meager subsets;
- ► US the ideal of universally small subsets.

What are the counterparts of those ideals for discrete groups like $G = \mathbb{Z}$?

The answer is easy for the first two ideals:

Just take any Banach (=shift-invariant finitely additive probability) measure μ on *G* and consider the ideal:

• \mathcal{N}_{μ} of null subsets of *G* with respect to the measure μ . Such ideals are important because of

Theorem

Each countably generated invariant ideal \mathcal{I} on a countable abelian group G lies in the ideal \mathcal{N}_{μ} for a suitable Banach measure μ .

The intersection of all null ideals gives the ideal

• $UN = \bigcap_{\mu} N_{\mu}$ of universally null subsets of *G*. So we get the inclusion:

$$\mathcal{UN} = igcap_{\mu} \mathcal{N}_{\mu} \subset igcup_{\mu} \mathcal{N}_{\mu}.$$

Note that the latter union is not at ideal in G and coincides with the union of all invariant ideals on G!

Question: What about the ideal \mathcal{M} of meager sets? What can be understood under "nowhere dense" subsets of G (for example, in case $G = \mathbb{Z}$)?

The intersection of all null ideals gives the ideal

• $UN = \bigcap_{\mu} N_{\mu}$ of universally null subsets of *G*. So we get the inclusion:

$$\mathcal{UN} = igcap_{\mu} \mathcal{N}_{\mu} \subset igcup_{\mu} \mathcal{N}_{\mu}.$$

Note that the latter union is not at ideal in *G* and coincides with the union of all invariant ideals on *G*! **Question:** What about the ideal \mathcal{M} of meager sets? What can be understood under "nowhere dense" subsets of *G* (for example, in case $G = \mathbb{Z}$)?

Large subsets of groups

A subset $A \subset G$ is *large* if it belongs to no invariant ideal on *G*. This happens if and only if F + A = G for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G. So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on G and consists of all non-large subsets.

Large subsets of groups

A subset $A \subset G$ is *large* if it belongs to no invariant ideal on *G*. This happens if and only if F + A = G for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G.

So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on *G* and consists of all non-large subsets.

Large subsets of groups

A subset $A \subset G$ is *large* if it belongs to no invariant ideal on *G*. This happens if and only if F + A = G for some finite subset $F \subset G$.

Example: Any subset with non-empty interior in a totally bounded topological group G is large.

Theorem

A subset $A \subset G$ of a countable abelian group G is large if and only if $\mu(A) > 0$ for every invariant measure μ on G. So, the union $\bigcup_{\mu} \mathcal{N}_{\mu}$ equals the union of all ideals on G and consists of all non-large subsets.

By the way, the following intriguing problem concerning large sets is still open:

Problem (Ellis)

Is it true that for each large subset $A \subset \mathbb{Z}$ the difference A - A is a neighborhood of zero in some totally bounded group topology on \mathbb{Z} .

Small subsets in groups

Definition

A subset *A* of a group *G* is *small* if for every large set $L \subset G$ the difference $L \setminus A$ is large.

Theorem

For a subset A of a countable abelian group G TFAE:

- 1. A is small;
- 2. for every finite $F \subset G$ the set $G \setminus (F + A)$ is large;
- 3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

An invariant topology on G is *totally bounded* if each open non-empty subset of G is large.

Small subsets in groups

Definition

A subset A of a group G is *small* if for every large set $L \subset G$ the difference $L \setminus A$ is large.

Theorem

For a subset A of a countable abelian group G TFAE:

- 1. A is small;
- 2. for every finite $F \subset G$ the set $G \setminus (F + A)$ is large;
- 3. A is nowhere dense in some (Hausdorff) totally bounded invariant topology on G.

An invariant topology on G is *totally bounded* if each open non-empty subset of G is large. Thus: small sets are exactly nowhere dense subsets in suitable totally bounded topologies.

It follows from the definiton that the family S of small subsets of a group is an invariant ideal. This ideal relates to the other ideals as follows:

$$\mathcal{UN}\subset\mathcal{S}\subsetigcup_{\mu}\mathcal{N}_{\mu}.$$

Question: What can be understood by universally small subset?

Hint: We need a counterpart of the countable chain condition for ideals in countable groups.

Packing index

Given a subset $A \subset G$ consider the cardinal

 $pack(A) = sup\{|B| : B \subset G \ \{b + A\}_{b \in B} \text{ is disjoint}\}$

called the packing index of A.

Example: $pack(2\mathbb{Z}) = 2$.

CH for packing indexes

Problem (Omiljanowski)

Is it true that the packing index pack(A) of a Borel subset of \mathbb{R} is either at most countable or else equal to c. (This is true if A is σ -compact.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

$\mathcal{I}\text{-packing}$ index

Let $\ensuremath{\mathcal{I}}$ is an ideal of subsets of a group.

We define a family \mathcal{A} of subsets of G to be \mathcal{I} -disjoint if $A \cap A' \in \mathcal{I}$ for any two distinct sets $A, A' \in \mathcal{A}$.

If $\mathcal{I} = \{\emptyset\}$ (resp. $\mathcal{I} = [G]^{<\omega}$), then \mathcal{I} -disjoint is the same as (almost) disjoint in the usual sense.

Introducing an ideal parameter in the definition of a packing index, we obtain the notion of the \mathcal{I} -packing index

 \mathcal{I} -pack $(A) = \sup\{|B| : B \subset G \ \{b + A\}_{b \in B} \text{ is } \mathcal{I}\text{-disjoint}\}.$

The packing completeness of ideals

Definition

An ideal \mathcal{I} on G is pack-complete if each subset $A \subset G$ with \mathcal{I} -pack $(A) \geq \aleph_0$ belongs to \mathcal{I} .

So, the packing completeness can be thought as a countepart of ccc-property for ideals on countable groups.

Examples of packing complete ideals:

The following ideals are packing complete:

• \mathcal{N}_{μ} for every invariant measure μ on G;

•
$$\mathcal{UN} = \bigcap_{\mu} \mathcal{N}_{\mu};$$

S, the ideal of small subsets of a countable abelian group G.

The packing completion of an ideal

Theorem

For every ideal \mathcal{I} on a countable abelian group G the intersection $\tilde{\mathcal{I}}$ of all packing complete ideals that contain \mathcal{I} is a well-defined packing complete ideal called the packing completion of \mathcal{I} . It is equal to the union

$$\tilde{\mathcal{I}} = \bigcup_{\alpha < \omega_1} \mathcal{I}_{\alpha}$$

where $\mathcal{I}_0 = \mathcal{I}$ and \mathcal{I}_{α} is the ideal generated by all subsets with infinite $\mathcal{I}_{<\alpha}$ -packing index.

The packing completion \mathcal{US} of the empty ideal $\mathcal{I} = \{\emptyset\}$ is the smallest packing complete ideal. So, we get the chain of packing complete ideals:

$$\mathcal{US} \subset \mathcal{UN} \subset \mathcal{S} \subset \bigcup_{\mu} \mathcal{N}_{\mu}.$$

The last two inclusions cannot be reversed.

Problem

- 1. Is $\mathcal{US} \neq \mathcal{UN}$?
- 2. Find a combinatorial characterization of subsets belonging to the ideal US.
- 3. What is the descriptive complexity of the ideals US and UN?

Thank you!

