Pytkeev \aleph_0 -spaces

Taras Banakh

(Lviv and Kielce)

Hejnice, 26 January 2014

Definition

A family \mathcal{N} of subsets of a topological space X is called:

- a network if for any point $x \in X$ and neighborhood $O_x \subset X$ of x there is a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$;
- a k-network if for any compact set $K \subset X$ and neighborhood $O_K \subset X$ of K there is a finite subfamily $\mathcal{F} \subset \mathcal{N}$ such that $K \subset \bigcup \mathcal{F} \subset \mathcal{N}$;
- a cs*-network if for any point x ∈ X, neighborhood O_x ⊂ X and convergent sequence x_n → x in X, there is a set N ∈ N such that x ∈ N ⊂ O_x and {n ∈ ω : x_n ∈ N} is infinite;
- a *Pytkeev network* if for any point x ∈ A, neighborhood
 O_x ⊂ X, and set A ⊂ X with x ∈ Ā there is a set N ∈ N
 such that x ⊂ N ⊂ N and N ∩ A is infinite if x ∈ Ā \ A.

Definition

A family \mathcal{N} of subsets of a topological space X is called:

- a network if for any point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a k-network if for any compact set $K \subset X$ and neighborhood $O_K \subset X$ of K there is a finite subfamily $\mathcal{F} \subset \mathcal{N}$ such that $K \subset \bigcup \mathcal{F} \subset \mathcal{N}$;
- a cs*-network if for any point x ∈ X, neighborhood O_x ⊂ X and convergent sequence x_n → x in X, there is a set N ∈ N such that x ∈ N ⊂ O_x and {n ∈ ω : x_n ∈ N} is infinite;
- a *Pytkeev network* if for any point x ∈ A, neighborhood
 O_x ⊂ X, and set A ⊂ X with x ∈ Ā there is a set N ∈ N
 such that x ⊂ N ⊂ N and N ∩ A is infinite if x ∈ Ā \ A.

Definition

A family $\mathcal N$ of subsets of a topological space X is called:

- a network if for any point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a k-network if for any compact set $K \subset X$ and neighborhood $O_K \subset X$ of K there is a finite subfamily $\mathcal{F} \subset \mathcal{N}$ such that $K \subset \bigcup \mathcal{F} \subset \mathcal{N}$;
- a cs^{*}-network if for any point $x \in X$, neighborhood $O_x \subset X$ and convergent sequence $x_n \to x$ in X, there is a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and $\{n \in \omega : x_n \in N\}$ is infinite;
- a *Pytkeev network* if for any point x ∈ A, neighborhood
 O_x ⊂ X, and set A ⊂ X with x ∈ Ā there is a set N ∈ N such that x ⊂ N ⊂ N and N ∩ A is infinite if x ∈ Ā \ A.

Definition

A family \mathcal{N} of subsets of a topological space X is called:

- a network if for any point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a k-network if for any compact set $K \subset X$ and neighborhood $O_K \subset X$ of K there is a finite subfamily $\mathcal{F} \subset \mathcal{N}$ such that $K \subset \bigcup \mathcal{F} \subset \mathcal{N}$;
- a cs^{*}-network if for any point $x \in X$, neighborhood $O_x \subset X$ and convergent sequence $x_n \to x$ in X, there is a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and $\{n \in \omega : x_n \in N\}$ is infinite;
- a *Pytkeev network* if for any point $x \in A$, neighborhood $O_x \subset X$, and set $A \subset X$ with $x \in \overline{A}$ there is a set $N \in \mathcal{N}$ such that $x \subset N \subset \mathcal{N}$ and $N \cap A$ is infinite if $x \in \overline{A} \setminus A$.

Relations between various countable networks

A regular topological space X is called

- cosmic if X has a countable network;
- an ℵ₀-space if X has a countable k-network;

• a *Pytkeev* \aleph_0 -*space* if X has a countable Pytkeev network.

ℵ₀-spaces were introduced in 1966 by E.Michael. They compose an important class of generalized metric spaces.

A regular topological space X is called

- cosmic if X has a countable network;
- an ℵ₀-space if X has a countable k-network;

• a *Pytkeev* \aleph_0 -*space* if X has a countable Pytkeev network.

ℵ₀-spaces were introduced in 1966 by E.Michael. They compose an important class of generalized metric spaces.

A regular topological space X is called

- cosmic if X has a countable network;
- an ℵ₀-space if X has a countable k-network;
- a *Pytkeev* \aleph_0 -*space* if X has a countable Pytkeev network.

ℵ₀-spaces were introduced in 1966 by E.Michael. They compose an important class of generalized metric spaces.

A regular topological space X is called

- cosmic if X has a countable network;
- an \aleph_0 -space if X has a countable k-network;
- a *Pytkeev* \aleph_0 -*space* if X has a countable Pytkeev network.

 \aleph_0 -spaces were introduced in 1966 by E.Michael. They compose an important class of generalized metric spaces.

A regular topological space X is called

- cosmic if X has a countable network;
- an \aleph_0 -space if X has a countable k-network;
- a *Pytkeev* \aleph_0 -*space* if X has a countable Pytkeev network.

 $lpha_0$ -spaces were introduced in 1966 by E.Michael.

They compose an important class of generalized metric spaces.

 $\mathsf{second}\ \mathsf{countable}\ \Rightarrow\ \mathsf{Pytkeev}\ \aleph_0\mathsf{-space}\ \Rightarrow\ \aleph_0\mathsf{-space}\ \Rightarrow\ \mathsf{cosmic}$

For any ultrafilter $p \in \beta \mathbb{N}$ the space $X = \mathbb{N} \cup \{p\} \subset \beta \mathbb{N}$ is an \aleph_0 -space but not a Pytkeev \aleph_0 -space.

So, the class of Pytkeev \aleph_0 -spaces is properly contained in the class of \aleph_0 -spaces.

On the other hand, we have

Theorem

A sequential space is an \aleph_0 -space iff X is a Pytkeev \aleph_0 -space.

Question

What interesting can be said about the class of Pytkeev \aleph_0 -spaces?

For any ultrafilter $p \in \beta \mathbb{N}$ the space $X = \mathbb{N} \cup \{p\} \subset \beta \mathbb{N}$ is an \aleph_0 -space but not a Pytkeev \aleph_0 -space.

So, the class of Pytkeev $\aleph_0\text{-spaces}$ is properly contained in the class of $\aleph_0\text{-spaces}.$

On the other hand, we have

Theorem

A sequential space is an \aleph_0 -space iff X is a Pytkeev \aleph_0 -space.

Question

What interesting can be said about the class of Pytkeev \aleph_0 -spaces?

For any ultrafilter $p \in \beta \mathbb{N}$ the space $X = \mathbb{N} \cup \{p\} \subset \beta \mathbb{N}$ is an \aleph_0 -space but not a Pytkeev \aleph_0 -space.

So, the class of Pytkeev $\aleph_0\text{-spaces}$ is properly contained in the class of $\aleph_0\text{-spaces}.$

On the other hand, we have

Theorem

A sequential space is an \aleph_0 -space iff X is a Pytkeev \aleph_0 -space.

Question

What interesting can be said about the class of Pytkeev X₀-spaces?

For any ultrafilter $p \in \beta \mathbb{N}$ the space $X = \mathbb{N} \cup \{p\} \subset \beta \mathbb{N}$ is an \aleph_0 -space but not a Pytkeev \aleph_0 -space.

So, the class of Pytkeev $\aleph_0\text{-spaces}$ is properly contained in the class of $\aleph_0\text{-spaces}.$

On the other hand, we have

Theorem

A sequential space is an \aleph_0 -space iff X is a Pytkeev \aleph_0 -space.

Question

What interesting can be said about the class of Pytkeev \%0-spaces?

A topological space X has *countable fan tightness* if for any sets $A_n \subset X$, $n \in \omega$, and a point $x \in \bigcap_{n \in \omega} \overline{A}_n$ there are finite sets $F_n \subset A_n$, $n \in \omega$, such that $x \in cl_X(\bigcup_{n \in \omega} F_n)$.

Theorem (B., 2013)

A topological space X is metrizable and separable if and only if X is a Pytkeev \aleph_0 -space with countable fan tightness.

So, second countable = Pytkeev \aleph_0 + countable fan tightness.

A topological space X has *countable fan tightness* if for any sets $A_n \subset X$, $n \in \omega$, and a point $x \in \bigcap_{n \in \omega} \overline{A}_n$ there are finite sets $F_n \subset A_n$, $n \in \omega$, such that $x \in cl_X(\bigcup_{n \in \omega} F_n)$.

Theorem (B., 2013)

A topological space X is metrizable and separable if and only if X is a Pytkeev \aleph_0 -space with countable fan tightness.

So, second countable = Pytkeev \aleph_0 + countable fan tightness.

A topological space X has *countable fan tightness* if for any sets $A_n \subset X$, $n \in \omega$, and a point $x \in \bigcap_{n \in \omega} \overline{A}_n$ there are finite sets $F_n \subset A_n$, $n \in \omega$, such that $x \in cl_X(\bigcup_{n \in \omega} F_n)$.

Theorem (B., 2013)

A topological space X is metrizable and separable if and only if X is a Pytkeev \aleph_0 -space with countable fan tightness.

So, second countable = Pytkeev \aleph_0 + countable fan tightness.

Fact

A regular space X is cosmic if and only if X is a continuous image of a separable metric space.

Theorem (Michael, 1966)

For a topological space X the following conditions are equivalent:

- X is a quotient image of a separable metric space;
- ② X is a sequential ℵ₀-space;
- **(a)** X is a sequential Pytkeev \aleph_0 -space.

Fact

A regular space X is cosmic if and only if X is a continuous image of a separable metric space.

Theorem (Michael, 1966)

For a topological space X the following conditions are equivalent:

- X is a quotient image of a separable metric space;
- **2** X is a sequential \aleph_0 -space;
 - **)** X is a sequential Pytkeev \aleph_0 -space.

Fact

A regular space X is cosmic if and only if X is a continuous image of a separable metric space.

Theorem (Michael, 1966)

For a topological space X the following conditions are equivalent:

- X is a quotient image of a separable metric space;
- **2** X is a sequential \aleph_0 -space;
- **3** X is a sequential Pytkeev \aleph_0 -space.

For topological spaces X, Y by $C_k(X, Y)$ we denote the space of continuous functions from X to Y, endowed with the compact-open topology.

Theorem (Michael, 1966)

For any \aleph_0 -spaces X, Y the function space $C_k(X, Y)$ is an \aleph_0 -space.

For topological spaces X, Y by $C_k(X, Y)$ we denote the space of continuous functions from X to Y, endowed with the compact-open topology.

Theorem (Michael, 1966)

For any \aleph_0 -spaces X, Y the function space $C_k(X, Y)$ is an \aleph_0 -space.

For any \aleph_0 -space X and any Pytkeev \aleph_0 -space Y the function space $C_k(X, Y)$ is a Pytkeev \aleph_0 -space.

Corollary

For any \aleph_0 -space X the space $C_k(X)$ is a Pytkeev \aleph_0 -space and so is the space $C_k C_k(X)$.

Corollary

The countable Tychonoff product $\prod_{n \in \omega} X_n$ of Pytkeev \aleph_0 -spaces X_n , $n \in \omega$, is a Pytkeev \aleph_0 -space.

For any \aleph_0 -space X and any Pytkeev \aleph_0 -space Y the function space $C_k(X, Y)$ is a Pytkeev \aleph_0 -space.

Corollary

For any \aleph_0 -space X the space $C_k(X)$ is a Pytkeev \aleph_0 -space and so is the space $C_k C_k(X)$.

Corollary

The countable Tychonoff product $\prod_{n \in \omega} X_n$ of Pytkeev \aleph_0 -spaces X_n , $n \in \omega$, is a Pytkeev \aleph_0 -space.

For any \aleph_0 -space X and any Pytkeev \aleph_0 -space Y the function space $C_k(X, Y)$ is a Pytkeev \aleph_0 -space.

Corollary

For any \aleph_0 -space X the space $C_k(X)$ is a Pytkeev \aleph_0 -space and so is the space $C_k C_k(X)$.

Corollary

The countable Tychonoff product $\prod_{n \in \omega} X_n$ of Pytkeev \aleph_0 -spaces X_n , $n \in \omega$, is a Pytkeev \aleph_0 -space.

For any \aleph_0 -space X and any Pytkeev \aleph_0 -space Y the function space $C_k(X, Y)$ is a Pytkeev \aleph_0 -space.

Corollary

For any \aleph_0 -space X the space $C_k(X)$ is a Pytkeev \aleph_0 -space and so is the space $C_k C_k(X)$.

Corollary

The countable Tychonoff product $\prod_{n \in \omega} X_n$ of Pytkeev \aleph_0 -spaces X_n , $n \in \omega$, is a Pytkeev \aleph_0 -space.

For any \aleph_0 -space X and any Pytkeev \aleph_0 -space Y the function space $C_k(X, Y)$ is a Pytkeev \aleph_0 -space.

Corollary

For any \aleph_0 -space X the space $C_k(X)$ is a Pytkeev \aleph_0 -space and so is the space $C_k C_k(X)$.

Corollary

The countable Tychonoff product $\prod_{n \in \omega} X_n$ of Pytkeev \aleph_0 -spaces X_n , $n \in \omega$, is a Pytkeev \aleph_0 -space.

A topological space X carries the *inductive topology* with respect to a cover C if the topology of X coincides with the strongest topology such that each identity inclusion $C \to X$, $C \in C$, is continuous.

For example, the topological sum $\coprod_{\alpha \in X} X_{\alpha}$ of a disjoint family of topological spaces $(X_{\alpha})_{\alpha \in A}$ carries the inductive topology with respect to the cover $\mathcal{C} = \{X_{\alpha}\}_{\alpha \in A}$.

Theorem

A regular topological space X is a Pytkeev \aleph_0 -space if X carries the inductive topology with respect to a countable cover C by subsets which are Pytkeev \aleph_0 -spaces. A topological space X carries the *inductive topology* with respect to a cover C if the topology of X coincides with the strongest topology such that each identity inclusion $C \to X$, $C \in C$, is continuous.

For example, the topological sum $\coprod_{\alpha \in X} X_{\alpha}$ of a disjoint family of topological spaces $(X_{\alpha})_{\alpha \in A}$ carries the inductive topology with respect to the cover $\mathcal{C} = \{X_{\alpha}\}_{\alpha \in A}$.

Theorem

A regular topological space X is a Pytkeev \aleph_0 -space if X carries the inductive topology with respect to a countable cover C by subsets which are Pytkeev \aleph_0 -spaces. A topological space X carries the *inductive topology* with respect to a cover C if the topology of X coincides with the strongest topology such that each identity inclusion $C \to X$, $C \in C$, is continuous.

For example, the topological sum $\coprod_{\alpha \in X} X_{\alpha}$ of a disjoint family of topological spaces $(X_{\alpha})_{\alpha \in A}$ carries the inductive topology with respect to the cover $\mathcal{C} = \{X_{\alpha}\}_{\alpha \in A}$.

Theorem

A regular topological space X is a Pytkeev \aleph_0 -space if X carries the inductive topology with respect to a countable cover C by subsets which are Pytkeev \aleph_0 -spaces. For topological spaces X_{α} , $\alpha \in A$, their *box-product*

 $\Box_{\alpha\in A}X_{\alpha}$

is the Cartesian product $\prod_{\alpha \in A} X_{\alpha}$ endowed with the topology generated by the base consisting of the products $\prod_{\alpha \in A} U_{\alpha}$ of open sets $U_{\alpha} \subset X_{\alpha}$.

A *pointed space* is a topological space X with a distinguished point $*_X \in X$.

For a family of pointed spaces X_{α} , $\alpha \in A$, their *small box-product*

 $\Box_{\alpha\in A}X_{\alpha} = \left\{ (x_{\alpha})_{\alpha\in A} \in \Box_{\alpha\in A}X_{\alpha} : \{\alpha\in A : x_{\alpha}\neq *_{X_{\alpha}}\} \text{ is finite} \right\}$

is a subspace of the box-product $\Box_{\alpha \in A} X_{\alpha}$.

Theorem

For any sequence X_n , $n \in \omega$, of pointed Pytkeev \aleph_0 -spaces their small box-product $\bigoplus_{n \in \omega} X_n$ is a Pytkeev \aleph_0 -space.

A *pointed space* is a topological space X with a distinguished point $*_X \in X$.

For a family of pointed spaces X_{α} , $\alpha \in A$, their *small box-product*

$$\boxdot_{\alpha \in \mathcal{A}} X_{\alpha} = \left\{ (x_{\alpha})_{\alpha \in \mathcal{A}} \in \Box_{\alpha \in \mathcal{A}} X_{\alpha} : \{ \alpha \in \mathcal{A} : x_{\alpha} \neq *_{X_{\alpha}} \} \text{ is finite} \right\}$$

is a subspace of the box-product $\Box_{\alpha \in A} X_{\alpha}$.

Theorem

For any sequence X_n , $n \in \omega$, of pointed Pytkeev \aleph_0 -spaces their small box-product $\boxdot_{n \in \omega} X_n$ is a Pytkeev \aleph_0 -space.

A *pointed space* is a topological space X with a distinguished point $*_X \in X$.

For a family of pointed spaces X_{α} , $\alpha \in A$, their *small box-product*

$$\boxdot_{\alpha \in \mathcal{A}} X_{\alpha} = \left\{ (x_{\alpha})_{\alpha \in \mathcal{A}} \in \Box_{\alpha \in \mathcal{A}} X_{\alpha} : \{ \alpha \in \mathcal{A} : x_{\alpha} \neq *_{X_{\alpha}} \} \text{ is finite} \right\}$$

is a subspace of the box-product $\Box_{\alpha \in A} X_{\alpha}$.

Theorem

For any sequence X_n , $n \in \omega$, of pointed Pytkeev \aleph_0 -spaces their small box-product $\bigoplus_{n \in \omega} X_n$ is a Pytkeev \aleph_0 -space.

For a topological space X by its hyperspace $\exp(X)$ is the space of non-empty compact subsets endowed with the Vietoris topology.

Theorem

For any Pytkeev \aleph_0 -space X its hyperspace $\exp(X)$ is a Pytkeev \aleph_0 -space.

For a topological space X by its hyperspace exp(X) is the space of non-empty compact subsets endowed with the Vietoris topology.

Theorem

For any Pytkeev \aleph_0 -space X its hyperspace $\exp(X)$ is a Pytkeev \aleph_0 -space.

Theorem

For any sequential \aleph_0 -space X the space $P_R(X)$ of probability Radon measures on X is a Pytkeev \aleph_0 -space.

Let X be a Tychonoff space. Its *free abelian topological group* is any abelian topological group A(X) algebraically generated by X so that any continuous map $f : X \to G$ to an abelian topological group G exends to a continuous homomorphism $\overline{f} : A(X) \to G$.

The *free locally convex space* is a locally convex space L(X) having X as a Hamel basis such that any continuous map $f : X \to Y$ to a locally convex space Y extends to a continuous linear operator $\overline{f} : L(X) \to Y$.

It is known that for a k-space X the identity homomorphisms $A(X) \rightarrow L(X) \rightarrow C_k C_k(X)$ are topological embeddings.

Theorem (Leiderman, 2013)

For any sequential \aleph_0 -space X its free abelian topological group A(X) and its free locally convex space L(X) both are Pytkeev \aleph_0 -spaces.

Let X be a Tychonoff space. Its *free abelian topological group* is any abelian topological group A(X) algebraically generated by X so that any continuous map $f : X \to G$ to an abelian topological group G exends to a continuous homomorphism $\overline{f} : A(X) \to G$. The *free locally convex space* is a locally convex space L(X) having X as a Hamel basis such that any continuous map $f : X \to Y$ to a locally convex space Y extends to a continuous linear operator $\overline{f} : L(X) \to Y$.

It is known that for a k-space X the identity homomorphisms $A(X) \rightarrow L(X) \rightarrow C_k C_k(X)$ are topological embeddings.

Theorem (Leiderman, 2013)

For any sequential \aleph_0 -space X its free abelian topological group A(X) and its free locally convex space L(X) both are Pytkeev \aleph_0 -spaces.

▲□ ► ▲ □ ► ▲

Let X be a Tychonoff space. Its *free abelian topological group* is any abelian topological group A(X) algebraically generated by X so that any continuous map $f : X \to G$ to an abelian topological group G exends to a continuous homomorphism $\overline{f} : A(X) \to G$. The *free locally convex space* is a locally convex space L(X) having X as a Hamel basis such that any continuous map $f : X \to Y$ to a locally convex space Y extends to a continuous linear operator $\overline{f} : L(X) \to Y$.

It is known that for a *k*-space X the identity homomorphisms $A(X) \rightarrow L(X) \rightarrow C_k C_k(X)$ are topological embeddings.

Theorem (Leiderman, 2013)

For any sequential \aleph_0 -space X its free abelian topological group A(X) and its free locally convex space L(X) both are Pytkeev \aleph_0 -spaces.

Let X be a Tychonoff space. Its *free abelian topological group* is any abelian topological group A(X) algebraically generated by X so that any continuous map $f : X \to G$ to an abelian topological group G exends to a continuous homomorphism $\overline{f} : A(X) \to G$. The *free locally convex space* is a locally convex space L(X) having X as a Hamel basis such that any continuous map $f : X \to Y$ to a locally convex space Y extends to a continuous linear operator $\overline{f} : L(X) \to Y$.

It is known that for a k-space X the identity homomorphisms $A(X) \rightarrow L(X) \rightarrow C_k C_k(X)$ are topological embeddings.

Theorem (Leiderman, 2013)

For any sequential \aleph_0 -space X its free abelian topological group A(X) and its free locally convex space L(X) both are Pytkeev \aleph_0 -spaces.

・ロト ・同ト ・ヨト ・ヨト

The class of Pytkeev \aleph_0 -spaces is a new class of generalized metric spaces, closed under taking subspaces, countable topological sums, countable inductive limits, countable Tychonoff products, countable box-products, countable inductive limits, function spaces C_k , hyperspaces, spaces of probability measures, and some free algebraic constructions.

T.Banakh, *Pytkeev* ℵ₀-spaces, (2013); http://arxiv.org/abs/1311.1468

Thanks to:

- Arkady Leiderman who posed a proper question (about function space $C_k(\mathbb{Q})$) in a proper place (Warsaw) in a proper time (13 October 2013);
- Henryk Michalewski who invited me to the Conference "Mostowski 100" organized by Warsaw University on 11-13 October 2013;
- You for your attention!

Thanks to:

- Arkady Leiderman who posed a proper question (about function space $C_k(\mathbb{Q})$) in a proper place (Warsaw) in a proper time (13 October 2013);
- Henryk Michalewski who invited me to the Conference "Mostowski 100" organized by Warsaw University on 11-13 October 2013;
- You for your attention!

Thanks to:

- Arkady Leiderman who posed a proper question (about function space $C_k(\mathbb{Q})$) in a proper place (Warsaw) in a proper time (13 October 2013);
- Henryk Michalewski who invited me to the Conference "Mostowski 100" organized by Warsaw University on 11-13 October 2013;
- You for your attention!