Transversal and independent topologies

Aleksander Błaszczyk

Institute of Mathematics University of Silesia, Katowice

Hejnice, 2010

Aleksander Błaszczyk (UŚ)

Transversal and independent topologies

Hejnice, 2010 1 / 18

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology ,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on *X*, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology ,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology ,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma = \text{ the topology generated by } \tau \cup \sigma,$

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology ,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

All results presented here were obtained jointly with Mikhail Tkachenko.

All the topologies considered here are assumed to be T_1 -topologies on infinite sets.

If $\tau, \sigma \subseteq \mathcal{P}(X)$ are topologies on X, then

 $\tau \wedge \sigma = \tau \cap \sigma,$

 $\tau \lor \sigma =$ the topology generated by $\tau \cup \sigma$,

 $\mathbf{1}_X = \mathcal{P}(X)$ is the discrete topology,

 $\mathbf{0}_X = \{X \setminus F \colon F \in [X]^{<\omega}\} \cup \{\emptyset\}$ is the co-finite topology.

- If $\kappa \geq \omega$, then $\Lambda(\kappa)$ denotes the lattice of all T_1 -topologies on κ .
- (1) (G. Birkhoff, FM 1936) If $\kappa \geq \omega$, then the lattice $\Lambda(\kappa)$ is complete,
- (2) (R. W. Bagley J. London Math. Soc. 1955) The lattice Λ(κ) is not complementary whenever κ ≥ ω,
- (3) (R. W. Bagley and D. Ellis, Math. Japon, 1954) The lattice Λ(κ) is not distributive whenever κ ≥ ω.

- If $\kappa \geq \omega$, then $\Lambda(\kappa)$ denotes the lattice of all T_1 -topologies on κ .
 - (1) (G. Birkhoff, FM 1936) If $\kappa \geq \omega$, then the lattice $\Lambda(\kappa)$ is complete,
 - (2) (R. W. Bagley J. London Math. Soc. 1955) The lattice Λ(κ) is not complementary whenever κ ≥ ω,
 - (3) (R. W. Bagley and D. Ellis, Math. Japon, 1954) The lattice Λ(κ) is not distributive whenever κ ≥ ω.

- If $\kappa \geq \omega$, then $\Lambda(\kappa)$ denotes the lattice of all T_1 -topologies on κ .
 - (1) (G. Birkhoff, FM 1936) If $\kappa \geq \omega$, then the lattice $\Lambda(\kappa)$ is complete,
 - (2) (R. W. Bagley J. London Math. Soc. 1955) The lattice Λ(κ) is not complementary whenever κ ≥ ω,
 - (3) (R. W. Bagley and D. Ellis, Math. Japon, 1954) The lattice Λ(κ) is not distributive whenever κ ≥ ω.

- If $\kappa \geq \omega$, then $\Lambda(\kappa)$ denotes the lattice of all T_1 -topologies on κ .
 - (1) (G. Birkhoff, FM 1936) If $\kappa \geq \omega$, then the lattice $\Lambda(\kappa)$ is complete,
 - (2) (R. W. Bagley J. London Math. Soc. 1955) The lattice Λ(κ) is not complementary whenever κ ≥ ω,
 - (3) (R. W. Bagley and D. Ellis, Math. Japon, 1954) The lattice Λ(κ) is not distributive whenever κ ≥ ω.

Example: let $\kappa \ge \omega$ and let $x_0 \in \kappa$ be fixed. If $A \subseteq \kappa \setminus \{x_0\}$ is infinite and $\kappa \setminus A$ is also infinite, then topologies:

 $\tau_{0} = \mathbf{0}_{\kappa}$ $\tau_{1} = \mathbf{0}_{\kappa} \lor \{\emptyset, \mathbf{A}, \kappa\}$ $\tau_{2} = \mathbf{0}_{\kappa} \lor \{\emptyset, \mathbf{A} \cup \{\mathbf{x}_{0}\}, \kappa\}$ $\tau_{3} = \mathbf{0}_{\kappa} \lor \{\emptyset, \{\mathbf{x}_{0}\}, \kappa\}$ $\tau_{4} = \mathbf{0}_{\kappa} \lor \{\emptyset, \mathbf{A}, \{\mathbf{x}_{0}\}, \mathbf{A} \cup \{\mathbf{x}_{0}\}, \kappa\}$

form the lattice N_5 (pentagon), and so the lattice $\Lambda(\kappa)$ is not distributive.

・ロト ・四ト ・ヨト ・ヨト

Further definitions

(1) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called to be transversal if $\tau \lor \sigma = \mathbf{1}_X$,

whereas they are called independent whenever

$$\tau \wedge \sigma = \mathbf{0}_X.$$

(2) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called complementary if $\tau \lor \sigma = \mathbf{1}_X$ and $\tau \land \sigma = \mathbf{0}_X$.

(3) Topological spaces (X, τ) and (Y, σ) are called transversal (independent) if there exists a bijection f: X → Y such that τ and f⁻¹(σ) = {f⁻¹[U]: U ∈ σ}

are transversal (independent). Moreover, if $(X, \tau) = (Y, \sigma)$, then (X, τ) is called to be self-transversal (self independent), z, z = -

Aleksander Błaszczyk (UŚ)

Transversal and independent topologies

Hejnice, 2010 5 / 18

Further definitions

(1) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called to be transversal if $\tau \lor \sigma = \mathbf{1}_X$.

whereas they are called independent whenever

$$\tau \wedge \sigma = \mathbf{0}_X.$$

(2) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called complementary if $\tau \lor \sigma = \mathbf{1}_X$ and $\tau \land \sigma = \mathbf{0}_X$.

(3) Topological spaces (X, τ) and (Y, σ) are called transversal (independent) if there exists a bijection f: X → Y such that τ and f⁻¹(σ) = {f⁻¹[U]: U ∈ σ}

are transversal (independent). Moreover, if $(X, \tau) = (Y, \sigma)$, then (X, τ) is called to be self-transversal (self independent), z, $z \in \mathcal{A}$

Further definitions

(1) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called to be transversal if $\tau \lor \sigma = \mathbf{1}_X$.

whereas they are called independent whenever

$$\tau \wedge \sigma = \mathbf{0}_X.$$

(2) Topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are called complementary if $\tau \lor \sigma = \mathbf{1}_X$ and $\tau \land \sigma = \mathbf{0}_X$.

(3) Topological spaces (X, τ) and (Y, σ) are called transversal (independent) if there exists a bijection $f: X \to Y$ such that τ and

$$f^{-1}(\sigma) = \{f^{-1}[U] \colon U \in \sigma\}$$

are transversal (independent). Moreover, if $(X, \tau) = (Y, \sigma)$, then (X, τ) is called to be self-transversal (self independent).

Aleksander Błaszczyk (UŚ)

Easy observations

Fact 1

Assume (X, τ) is a topological space. If there exists a closed discrete subspace $D \subseteq X$ such that |D| = |X|, then (X, τ) is self-transversal.

Indeed, we can assume that $f: X \to X$ is a bijection such that $f[X \setminus D] = D$. Then for every $x \in X \setminus D$ there exist open sets $U, V \subseteq X$ such hat $x \in U, U \cap D = \emptyset$ and $f(x) \in V$ and $V \cap D = \{f(x)\}$. Therefore, if

$$\sigma = f^{-1}(\tau) = \{ f^{-1}[U] \colon U \in \tau \},$$

then $\{x\} = U \cap f^{-1}[V] \in \tau \lor \sigma$.

Easy observations

Fact 1

Assume (X, τ) is a topological space. If there exists a closed discrete subspace $D \subseteq X$ such that |D| = |X|, then (X, τ) is self-transversal.

Indeed, we can assume that $f: X \to X$ is a bijection such that $f[X \setminus D] = D$. Then for every $x \in X \setminus D$ there exist open sets $U, V \subseteq X$ such hat $x \in U, U \cap D = \emptyset$ and $f(x) \in V$ and $V \cap D = \{f(x)\}$. Therefore, if

$$\sigma = f^{-1}(\tau) = \{ f^{-1}[U] \colon U \in \tau \},$$

then $\{x\} = U \cap f^{-1}[V] \in \tau \lor \sigma$.

Fact 2

For every Hausdorff space $\tau \subseteq \mathcal{P}(X)$ there exists a compact Hausdorff topology $\sigma \subseteq \mathcal{P}(X)$ which is transversal to τ .

Indeed, if *x*, *y* are distinct points of *X*, then here exist disjoint infinite sets $A, B \subseteq X$ such that $X = A \cup B$ and $x \in Int_{\tau} A$ and $y \in Int_{\tau} B$. Then the topology

$\sigma = \{\{z\} \colon z \in X \setminus \{x, y\}\} \cup \{\{x\} \cup (B \setminus F) \colon F \in [X]^{<\omega}\} \cup \{\{y\} \cup (A \setminus F) \colon F \in [X]^{<\omega}\}$

is as required.

Fact 2

For every Hausdorff space $\tau \subseteq \mathcal{P}(X)$ there exists a compact Hausdorff topology $\sigma \subseteq \mathcal{P}(X)$ which is transversal to τ .

Indeed, if *x*, *y* are distinct points of *X*, then here exist disjoint infinite sets $A, B \subseteq X$ such that $X = A \cup B$ and $x \in Int_{\tau} A$ and $y \in Int_{\tau} B$. Then the topology

$$\sigma = \{\{z\} \colon z \in X \setminus \{x, y\}\} \cup \{\{x\} \cup (B \setminus F) \colon F \in [X]^{<\omega}\} \cup \{\{y\} \cup (A \setminus F) \colon F \in [X]^{<\omega}\}$$

is as required.

Transversal topologies

Theorem 1

Let X be a countable infinite regular space. Then X is transversal to the space \mathbb{Q} of all rationals iff X is <u>not</u> homeomorphic to the convergent sequence $\{0\} \cup \{\frac{1}{n+1} : n \in \omega\}$.

Lemma

Every non-compact regular countable (infinite) space has a continuous bijection onto the space \mathbb{Q} .

Transversal topologies

Theorem 1

Let X be a countable infinite regular space. Then X is transversal to the space \mathbb{Q} of all rationals iff X is <u>not</u> homeomorphic to the convergent sequence $\{0\} \cup \{\frac{1}{n+1} : n \in \omega\}$.

Lemma

Every non-compact regular countable (infinite) space has a continuous bijection onto the space \mathbb{Q} .

Theorem 2

If the topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are transversal, then

$$|X| = \max\{\mathsf{nw}(X, \tau), \mathsf{nw}(X, \sigma)\},\$$

where nw denotes the net-weight of a space. Moreover, if the spaces are compact, then

$$|\mathbf{X}| = \max\{\mathsf{w}(\mathbf{X},\tau),\mathsf{w}(\mathbf{X},\sigma)\}.$$

Corollary 1

If on X there is a pair of compact metric transversal topologies, then X is countable.

Theorem 2

If the topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are transversal, then

$$|X| = \max\{\mathsf{nw}(X, \tau), \mathsf{nw}(X, \sigma)\},\$$

where nw denotes the net-weight of a space. Moreover, if the spaces are compact, then

$$|\mathbf{X}| = \max\{\mathbf{w}(\mathbf{X},\tau),\mathbf{w}(\mathbf{X},\sigma)\}.$$

Corollary 1

If on X there is a pair of compact metric transversal topologies, then X is countable.

Independent topologies

Theorem 3

If compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are independent, then for every $A \subseteq X$ we have

either
$$|\operatorname{cl}_{\tau} A| \geq 2^{\aleph_1}$$
 or $|\operatorname{cl}_{\sigma} A| \geq 2^{\aleph_1}$.

Corollary 2

No set of power less than 2^{\aleph_1} admits a pair of compact independent topologies.

Independent topologies

Theorem 3

If compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are independent, then for every $A \subseteq X$ we have

either
$$|\operatorname{cl}_{\tau} A| \geq 2^{\aleph_1}$$
 or $|\operatorname{cl}_{\sigma} A| \geq 2^{\aleph_1}$.

Corollary 2

No set of power less than 2^{\aleph_1} admits a pair of compact independent topologies.

Independent topologies

Theorem 3

If compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are independent, then for every $A \subseteq X$ we have

either
$$|\operatorname{cl}_{\tau} A| \geq 2^{\aleph_1}$$
 or $|\operatorname{cl}_{\sigma} A| \geq 2^{\aleph_1}$.

Corollary 2

No set of power less than 2^{\aleph_1} admits a pair of compact independent topologies.

Theorem 4

Assume $\tau, \sigma \subseteq \mathcal{P}(X)$ are independent topologies and every infinite subset of X contains an infinite subsets with at most finitely many accumulation points in the topology τ . Then every infinite set has infinitely many accumulations points in topology σ . In particular (X, σ) is countably compact.

Corollary 3 (Shakhmatow-Tkachenko-Wilson)

No countable set admits a pair of independent Hausdorff topologies.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem 4

Assume $\tau, \sigma \subseteq \mathcal{P}(X)$ are independent topologies and every infinite subset of X contains an infinite subsets with at most finitely many accumulation points in the topology τ . Then every infinite set has infinitely many accumulations points in topology σ . In particular (X, σ) is countably compact.

Corollary 3 (Shakhmatow-Tkachenko-Wilson)

No countable set admits a pair of independent Hausdorff topologies.

Complementary topologies

Theorem 5 (S.Watson)

On a set of power $(2^{\omega})^+$ there exists a pair of complementary Tychonoff topologies.

Theorem 6 (Shakhmatov-Tkachenko)

On a set of power $2^{2^{\omega}}$ there exists a pair of complementary compact topologies.

3

イロト 不得 トイヨト イヨト

Complementary topologies

Theorem 5 (S.Watson)

On a set of power $(2^{\omega})^+$ there exists a pair of complementary Tychonoff topologies.

Theorem 6 (Shakhmatov-Tkachenko)

On a set of power $2^{2^{\omega}}$ there exists a pair of complementary compact topologies.

Complementary topologies

Theorem 5 (S.Watson)

On a set of power $(2^{\omega})^+$ there exists a pair of complementary Tychonoff topologies.

Theorem 6 (Shakhmatov-Tkachenko)

On a set of power $2^{2^{\omega}}$ there exists a pair of complementary compact topologies.

Theorem 7

Let (X, τ) be Hausdorff space with $|X| = \kappa = \kappa^{\omega}$ and let

 $\mathsf{Iso}(X,\tau) = \{ x \in X \colon \{ x \} \in \tau \}$

be dense in (X, τ) . If every closed (in sense of τ) subset of X is of cardinality κ , then there exists a family T of locally compact topologies on X such that:

- (1) every $\sigma \in \mathcal{T}$ is complementary to τ ,
- (2) every two distinct elements of T are transversal,
- (3) $|\mathcal{T}| = |\operatorname{Iso}(X, \tau)|$

Moreover, there exists at least one compact topology complementary to τ .

Theorem 7

Let (X, τ) be Hausdorff space with $|X| = \kappa = \kappa^{\omega}$ and let

 $\mathsf{Iso}(X,\tau) = \{ x \in X \colon \{ x \} \in \tau \}$

be dense in (X, τ) . If every closed (in sense of τ) subset of X is of cardinality κ , then there exists a family T of locally compact topologies on X such that:

- (1) every $\sigma \in \mathcal{T}$ is complementary to τ ,
- (2) every two distinct elements of T are transversal,
- (3) $|\mathcal{T}| = |\operatorname{Iso}(X, \tau)|$

Moreover, there exists at least one compact topology complementary to τ .

Corollary 4

There exist infinitely many locally compact and at least one compact topology complementary to $\beta \mathbb{N}$. In particular on the set of cardinality $2^{2^{\omega}}$ there exists a pair of complementary compact topologies.

Corollary 5

There is consistent with ZFC that on the set of cardinality 2^{\aleph_0} there exists a pair of complementary compact topologies.

Indeed, under the assumption that $2^{\aleph_0} = 2^{\aleph_1}$ and $\mathfrak{s} = \aleph_1$, a modification of the Fedorchuk example (asserting that there exists a compact Hausdorff space of cardinality 2^{\aleph_0} without nontrivial converging sequences) gives a space satisfying the assumption of the Theorem 7 with $\kappa = 2^{\aleph_0}$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Corollary 4

There exist infinitely many locally compact and at least one compact topology complementary to $\beta \mathbb{N}$. In particular on the set of cardinality $2^{2^{\omega}}$ there exists a pair of complementary compact topologies.

Corollary 5

There is consistent with ZFC that on the set of cardinality 2^{\aleph_0} there exists a pair of complementary compact topologies.

Indeed, under the assumption that $2^{\aleph_0} = 2^{\aleph_1}$ and $\mathfrak{s} = \aleph_1$, a modification of the Fedorchuk example (asserting that there exists a compact Hausdorff space of cardinality 2^{\aleph_0} without nontrivial converging sequences) gives a space satisfying the assumption of the Theorem 7 with $\kappa = 2^{\aleph_0}$.

3

イロト 不得 トイヨト イヨト

1. Does there exists (in ZFC) a pair of complementary compact topologies on a set of cardinality 2^{\aleph_1} ?

2. Let $\kappa > 2^{2^{\omega}}$. Does there exists on a set of cardinality κ a pair of complementary compact topologies?

3. Is it consistent with ZFC, that $(2^{\omega})^+ < 2^{2^{\omega}}$ and there exists a pair of complementary compact topologies on a set of cardinality $(2^{\omega})^+$? **4.** Is it true that whenever compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are complementary then every point of X is isolated either in τ or in σ ?

イロト イポト イラト イラ

1. Does there exists (in ZFC) a pair of complementary compact topologies on a set of cardinality 2^{\aleph_1} ?

2. Let $\kappa > 2^{2^{\omega}}$. Does there exists on a set of cardinality κ a pair of complementary compact topologies?

3. Is it consistent with ZFC, that $(2^{\omega})^+ < 2^{2^{\omega}}$ and there exists a pair of complementary compact topologies on a set of cardinality $(2^{\omega})^+$? **4.** Is it true that whenever compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are complementary then every point of *X* is isolated either in τ or in σ ?

1. Does there exists (in ZFC) a pair of complementary compact topologies on a set of cardinality 2^{\aleph_1} ?

2. Let $\kappa > 2^{2^{\omega}}$. Does there exists on a set of cardinality κ a pair of complementary compact topologies?

3. Is it consistent with ZFC, that $(2^{\omega})^+ < 2^{2^{\omega}}$ and there exists a pair of complementary compact topologies on a set of cardinality $(2^{\omega})^+$?

4. Is it true that whenever compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are complementary then every point of *X* is isolated either in τ or in σ ?

イロト イポト イラト イラト

1. Does there exists (in ZFC) a pair of complementary compact topologies on a set of cardinality 2^{\aleph_1} ?

2. Let $\kappa > 2^{2^{\omega}}$. Does there exists on a set of cardinality κ a pair of complementary compact topologies?

3. Is it consistent with ZFC, that $(2^{\omega})^+ < 2^{2^{\omega}}$ and there exists a pair of complementary compact topologies on a set of cardinality $(2^{\omega})^+$?

4. Is it true that whenever compact topologies $\tau, \sigma \subseteq \mathcal{P}(X)$ are complementary then every point of *X* is isolated either in τ or in σ ?

< 口 > < 同 > < 回 > < 回 > < 回 > <

Alexandroff duplicate

Definition:

If (X, τ) is a topological space then the Alexandroff duplicate of X consists of the set $A(X) = X \cup X^*$ endowed with the topology τ^* , where $X \cap X^* = \emptyset$ and $\varphi \colon X \to X^*$ is a bijection and

$$au^* = \{ A \cup [(U \cup U^*) \setminus B] \colon U \in \tau, \ A, B \subseteq X^*, \ |B| < leph_0 \},$$

where $U^* = \varphi(U)$ for every $U \subseteq X$.

Fact 3

For every space X, the Alexandroff duplicate A(X) is self-transversal.

Alexandroff duplicate

Definition:

If (X, τ) is a topological space then the Alexandroff duplicate of X consists of the set $A(X) = X \cup X^*$ endowed with the topology τ^* , where $X \cap X^* = \emptyset$ and $\varphi \colon X \to X^*$ is a bijection and

$$au^* = \{ oldsymbol{A} \cup [(oldsymbol{U} \cup oldsymbol{U}^*) \setminus oldsymbol{B}] \colon oldsymbol{U} \in au, \ oldsymbol{A}, oldsymbol{B} \subseteq oldsymbol{X}^*, \ |oldsymbol{B}| < leph_0 \},$$

where $U^* = \varphi(U)$ for every $U \subseteq X$.

Fact 3

For every space X, the Alexandroff duplicate A(X) is self-transversal.

Theorem 8

If X is a compact separable space, and G(X) is the Gleason space (=absolute) of X then A(G(X)), the Alexandroff duplicate of G(X) has a compact complementary topology.

Theorem 9

If X is a T_1 -topological space and $|X| \leq 2^{\omega}$ then the space

 $X \oplus A(\beta \mathbb{N} \setminus \mathbb{N})$

is self-complementary.

Theorem 8

If X is a compact separable space, and G(X) is the Gleason space (=absolute) of X then A(G(X)), the Alexandroff duplicate of G(X) has a compact complementary topology.

Theorem 9

If X is a T₁-topological space and $|X| \leq 2^{\omega}$ then the space

 $X \oplus A(\beta \mathbb{N} \setminus \mathbb{N})$

is self-complementary.

Selected literature

G. Birkhoff,

On the combination of topologies, Fund. Math. 26 (1936), 156–166.

- I. Juhász, M. G. Tkachenko, V. V. Tkachuk, and R. G. Wilson, Self-transversal spaces and their discrete subspaces, Rocky Mount. J. Math. 35 no. 4 (2005), 1157–1172.
- D. Shakhmatov and M. G. Tkachenko,
 A compact Hausdorff topology that is a T₁-complement of itself,
 Fund. Math. 175 (2002), 163–173.
- D. Shakhmatov, M. G. Tkachenko, R. G. Wilson, Transversal and T₁-independent topologies, Houston J. Math. **30** no. 2 (2004), 11–16.