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General properties of A(k)

If K > w, then A(x) denotes the lattice of all T;-topologies on .
(1) (G. Birkhoff, FM 1936) If k > w, then the lattice A(x) is complete,
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Example: let k > w and let xg € x be fixed. If A C k \ {Xp} is infinite
and x \ A is also infinite, then topologies:

70 = On
71 =0, V{0,A Kk}
75 =0,V {@,AU {XO},K}
73 =0,V {0, {Xo},x}
74 =0,V {@,A, {Xo},A U {XQ}, K}

form the lattice N5 (pentagon), and so the lattice A(x) is not distributive.
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Further definitions

(1) Topologies 7,0 C P(X) are called to be transversal if
TVo =1y,
whereas they are called independent whenever

7 Ao = 0.
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Further definitions

(1) Topologies 7,0 C P(X) are called to be transversal if
TVo =1y,
whereas they are called independent whenever

7 Ao = 0.

(2) Topologies 7,0 C P(X) are called complementary if

TVo=1x and 7 Ao = Ox.

(3) Topological spaces (X, 7) and (Y, o) are called transversal
(independent) if there exists a bijection f: X — Y such that = and
(o) = {f71U]: U € 0}

are transversal (independent). Moreover, if (X,7) = (Y, o), then
(X, 7) is called to be self-transversal ( self independent).
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Easy observations

Fact 1

Assume (X, 7) is a topological space. If there exists a closed discrete
subspace D C X such that |D| = |X]|, then (X, 7) is self-transversal.
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Easy observations

Fact 1

Assume (X, 7) is a topological space. If there exists a closed discrete
subspace D C X such that |[D| = |X]|, then (X, 7) is self-transversal.

Indeed, we can assume that f: X — X is a bijection such that
f[X \ D] = D. Then for every x € X \ D there exist open sets U,V C X
suchhatx e U,UnND =0andf(x) e VandV ND = {f(x)}.
Therefore, if

o="f1"Yr)={f1U]: U e 7},

then {x} =Unf-lV]ervoe.
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Fact 2

For every Hausdorff space 7 C P(X) there exists a compact Hausdorff
topology o C P(X) which is transversal to 7.
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Fact 2
For every Hausdorff space 7 C P(X) there exists a compact Hausdorff
topology o C P(X) which is transversal to .

Indeed, if X,y are distinct points of X, then here exist disjoint infinite
sets A,B C X suchthat X =AuUBandx €Int;Aandy € Int. B. Then

the topology

o={{z}: ze X\ {x,y}JU{{x}U(B\F): F € [X]**}
U{{y} U(A\F): F € [X]=}

is as required.
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Transversal topologies

Theorem 1

Let X be a countable infinite regular space. Then X is transversal to
the space Q of all rationals iff X is not homeomorphic to the

convergent sequence {0} U {717: n € w}.
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Transversal topologies

Theorem 1

Let X be a countable infinite regular space. Then X is transversal to
the space Q of all rationals iff X is not homeomorphic to the

convergent sequence {0} U {717: n € w}.

Lemma

Every non-compact regular countable (infinite) space has a continuous
bijection onto the space Q.
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Theorem 2
If the topologies 7,0 C P(X) are transversal, then

IX| = max{nw(X, 7),nw(X, o)},

where nw denotes the net-weight of a space. Moreover, if the spaces
are compact, then

IX| = max{w(X,7),w(X,0)}.
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IX| = max{nw(X, 7),nw(X, o)},

where nw denotes the net-weight of a space. Moreover, if the spaces
are compact, then

IX| = max{w(X,7),w(X,0)}.

Corollary 1

If on X there is a pair of compact metric transversal topologies, then X
is countable.
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Independent topologies

Theorem 3

If compact topologies 7,0 C P(X) are independent, then for every
A C X we have

either | cl. A| > 2™ or | cl, A| > 2™,
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Theorem 4

Assume 7,0 C P(X) are independent topologies and every infinite
subset of X contains an infinite subsets with at most finitely many
accumulation points in the topology 7. Then every infinite set has
infinitely many accumulations points in topology o. In particular (X, o)
is countably compact.
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Theorem 4

Assume 7,0 C P(X) are independent topologies and every infinite
subset of X contains an infinite subsets with at most finitely many
accumulation points in the topology 7. Then every infinite set has
infinitely many accumulations points in topology o. In particular (X, o)
is countably compact.

Corollary 3 (Shakhmatow-Tkachenko-Wilson)
No countable set admits a pair of independent Hausdorff topologies.
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Complementary topologies

Theorem 5 (S.Watson)

On a set of power (2¥)* there exists a pair of complementary
Tychonoff topologies.
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Theorem 7
Let (X, 7) be Hausdorff space with |X| = x = k* and let

Iso(X,7) ={x € X: {x} e}
be dense in (X, 7). If every closed (in sense of 7) subset of X is of
cardinality «, then there exists a family 7 of locally compact topologies
on X such that:
(1) every o € T is complementary to 7,
(2) every two distinct elements of 7 are transversal,
(3) 7] = [Iso(X,7)]

Moreover, there exists at least one compact topology complementary
to 7.
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Corollary 4

There exist infinitely many locally compact and at least one compact
topology complementary to GN. In particular on the set of cardinality
22" there exists a pair of complementary compact topologies.

Corollary 5

There is consistent with ZFC that on the set of cardinality 2% there
exists a pair of complementary compact topologies.
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Corollary 4

There exist infinitely many locally compact and at least one compact
topology complementary to GN. In particular on the set of cardinality
22" there exists a pair of complementary compact topologies.

Corollary 5

There is consistent with ZFC that on the set of cardinality 2% there
exists a pair of complementary compact topologies.

Indeed, under the assumption that 2% = 2™ and s = X4, a
modification of the Fedorchuk example (asserting that there exists a
compact Hausdorff space of cardinality 2% without nontrivial
converging sequences) gives a space satisfying the assumption of the
Theorem 7 with x = 2%,
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Questions:
1. Does there exists (in ZFC) a pair of complementary compact
topologies on a set of cardinality 2% ?
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Questions:

1. Does there exists (in ZFC) a pair of complementary compact
topologies on a set of cardinality 2% ?

2. Let k > 2%°. Does there exists on a set of cardinality « a pair of
complementary compact topologies?

3. Is it consistent with ZFC, that (2¢)* < 22” and there exists a pair of
complementary compact topologies on a set of cardinality (2+)*?

4. |Is it true that whenever compact topologies 7,0 C P(X) are
complementary then every point of X is isolated either in 7 or in ?
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Alexandroff duplicate

Definition:

If (X, 1) is a topological space then the Alexandroff duplicate of X
consists of the set A(X) = X U X* endowed with the topology 7%,
where X N X* = and p: X — X* is a bijection and

7 ={AU[(UUU*)\B]: U er, A BCX" [B| <X}

where U* = ¢(U) for every U C X.
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Alexandroff duplicate

Definition:

If (X, 1) is a topological space then the Alexandroff duplicate of X
consists of the set A(X) = X U X* endowed with the topology 7%,
where X N X* = and p: X — X* is a bijection and

™ ={AU[(UUU")\B]:Uer, AJBCX", |B] <o},
where U* = ¢(U) for every U C X.

Fact 3
For every space X, the Alexandroff duplicate A(X) is self-transversal. J
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Theorem 8

If X is a compact separable space, and G(X) is the Gleason space
(=absolute) of X then A(G(X)), the Alexandroff duplicate of G(X) has
a compact complementary topology.
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Theorem 8

If X is a compact separable space, and G(X) is the Gleason space
(=absolute) of X then A(G(X)), the Alexandroff duplicate of G(X) has
a compact complementary topology.

Theorem 9
If X is a T1-topological space and |X| < 2¥ then the space

X ® A(GN \ N)

is self-complementary.
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