
Three applications of ideal dichotomy

No S-spaces (assuming Ideal dichotomy for ω1 generated ideals).
No Souslin trees (under PID).
b ≤ ω2 (under PID).
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Theorem
PFA implies that there no S-spaces. In fact, the simple dichotomy for
ℵ1-generated ideals implies that there are no S-spaces.

Recall this dichotomy. If I is any ω1 generated ideal of countable sets
then either there is an uncountable set our of I or an uncountable set
inside of I.
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Proof. Recall the definition: An S-space is a regular, hereditarily
separable, but not hereditarily Lindelof topological space.

To prove that no such space exists (under the dichotomy), suppose
that X is a regular topological space which is not hereditarily Lindelof
and we shall prove that X is not hereditarily separable. Since X is not
hereditarily Lindelof, X has a subspace S = {xα | α < ω1} such that
every initial part Sδ = {xα | α ≤ δ} is open in S (i.e. S is
“right-separated”). We consider the subspace topology on S and shall
find a subset of S which is not separable.
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Since S is regular, each xα has an open neighborhood Uα with closure
Uα ⊂ Sα.

These countable closed sets generate an ideal I. By the dichotomy,
there is an uncountable set D ⊂ S which is either “inside” or “out” of I.

If D is in, then every countable subset E of D is in I, which means that
it is covered by a countable closed set, and hence E is not dense in D.

If D is out of I, then D has a finite intersection with every set in I. So in
particular the intersection of D with every Uα is finite. As S is a
Hausdorff space, D is discrete (and therefore not separable).
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Now we deal with Souslin trees under PID.
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No Souslin trees under PID

Let T be an ω1 tree. Define an ideal I by: A ∈ I iff A ⊂ T is countable
and for every t ∈ T A ∩ {x ∈ T | x < t} is finite.

We have to check that I is a P-ideal.

There are two possibility of the dichotomy:
1 There is an uncountable set in I: this yields an uncountable

antichain.
2 There is an uncountable set out of I: this yields an uncountable

chain.
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Size of continuum under PID

By Todorcevic and Velickovic, the PFA implies the continuum is ℵ2.
Now the PID is consistent with CH. So PID does not imply c = ℵ2.
Does it imply c ≤ ℵ2? This is an open question. Todorcevic has proved
however that the PID implies b ≤ ℵ2.

Recall that b is the smallest cardinality of an unbounded subset of ωω

in the <∗ ordering.
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Theorem
PID implies b ≤ ω2.

Some definitions.

Definition
Suppose f <∗ g. Define χ(f ,g) = n if n is the minimal integer such that
for all m ≥ n f (m) < g(m).

Definition
For f ∈ ωω define (< f ) = {e ∈ ωω | e <∗ f}.
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Definition
If A ⊂ (< g), limf∈A χ(f ,g) =∞ means that for every n,
{f ∈ A | χ(f ,g) < n} is finite.

Definition
Let Ig be defined as the collection of all countable A ⊂ (< g) such that
limf∈A χ(f ,g) =∞.

Theorem
Ig is a P-ideal

g1 <
∗ g2 implies Ig1 ⊇ Ig2 .
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Proof of b ≤ ω2

Assume b > ω2. Construct a <∗ increasing sequence in ωω of length
ω2: 〈fξ | ξ < ω2〉.
We define an ideal I of countable subsets of ω2.

Definition
X ∈ I iff X is countable and for some ξ0 < ω2, for all ξ0 ≤ α < ω2 we
have X ∈ Ifξ . (By this we mean {fα | α ∈ X}.

Lemma
Assuming ω2 < b, I is a P-ideal.

Proof. Suppose Ai ∈ I, for i ∈ ω. For every ξ < ω2 high enough every
Ai is in Ifξ . Define hξ(j) = {α ∈ Aj | χ(fα, fξ) ≤ j} (a finite set).
Then find a single h that dominates all hx i (by ω2 < b), and use it to
define A =

⋃
i(Ai \ h(i)).
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A contradiction

By the PID there are two possibilities.

(1) There is an uncountable X inside I.

Suppose X has order type ω1. There is ξ < ω2 high enough so that for
every X0 ⊂ X an initial segment limα∈X0 χ(fα, fξ) =∞. But this is
impossible as we can fix χ(fα, fξ) on some uncountable set of α ∈ X .
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Second PID possibility: ω2 is a countable union of sets out of I. So
some unbounded E ⊂ ω2 is out of I.

Define g ∈ ωω so that fξ <∗ g for all ξ.

Define s ∈ (ω ∪ {∞})ω by

s(n) = supα∈E fα(n).

Claim: s hits∞ only a finite number of times.

(Otherwise we would find an infinite subset of E in I).

Define s−(n) = s(n)− 1. Then fξ <∗ s− for all ξ. Yet we can find now
an infinite subset of E that is in Is− and hence in each Ifξ and so in I.
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