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Motivation

Lemma ([1], Goldstern, Repický, Shelah, Spinas)

For a Borel set B ⊆ ωω the following conditions are equivalent:

B is strongly dominating.

There is a Laver tree p such that [p] ⊆ B.

Theorem ([2], Kechris)

For an analytic set A ⊆ ωω the following conditions are equivalent:

A is unbounded in (ωω,≤∗).

There exists a Miller tree q such that [q] ⊆ A.
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Strongly dominating sets and the ideal D
Definition

For a set A ⊆ ωω the properties D(A) and Ds(A), where s ∈ <ωω,
are defined as follows:

D(A)↔ (∀f : <ωω → ω)(∃x ∈ A)(∀∞n ∈ ω)x(n) ≥ f(x � n),

Ds(A)↔ (∀f : <ωω → ω)(∃x ∈ A ∩ [s])(∀n ≥ |s|)x(n) ≥ f(x � n).

If D(A) holds for a set A, we say that the set A is strongly dominating.

Example

As = {x ∈ [s] : (∀n ≥ |s|)x(n) ≡ 0 mod 2}, where s ∈ <ωω.

0 2 2k

0 2 2k 0 2 2k 0 2 2k

s
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Definition

A tree q ⊆ <ωω is said to be a Laver tree, if there is s ∈ q (a stem of q)
such that for every t ∈ q

1 either t ⊆ s or t ⊇ s,

2 if t ⊇ s the set {n ∈ ω : s_〈n〉 ∈ q} is infinite. (t is a splitting node)

Remark

Every strongly dominating subset of the Baire space is dominating.

Example

B = {x ∈ ωω : (∀k ∈ ω)x(2k + 1) = x(2k)}.

0 1 k

0 1 k 0 1 k 0 1 k

k

k

0 1 k
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Definition

Let us denote

D = {A ⊆ ωω : A is not strongly dominating}.

Theorem

The set D is σ-ideal on ωω with base consisting of Gδ sets and cardinal
characteristics as follows:

add(D) = cov(D) = b, non(D) = cof(D) = d.

Moreover, ideal D is orthogonal to ideal M of meager sets and also to
ideal Nµ of sets of measure zero, for every finite atomless Borel measure µ
on ωω.
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Lemma

Let A ⊆ ωω and s ∈ <ωω \ {∅} be arbitrary. Then

D(A)↔ (∀y ∈ ωω)(∃x ∈ A)(∀∞n ∈ ω)x(n+ 1) ≥ y(x(n)).

Ds(A)↔ (∀y ∈ ωω)(∃x ∈ A ∩ [s])(∀n ≥ |s| − 1)x(n+ 1) ≥ y(x(n)).

Lemma

Assume that A ⊆ ωω. Then

1 D(A)↔ (∃s ∈ <ωω)Ds(A),

2 Ds(A)↔ (∃∞n ∈ ω)Ds_〈n〉(A).

Corollary

If Ds(A) holds, then there is a Laver tree p ⊆ <ωω with stem s such that
for every x ∈ [p] we have (∀n ≥ |s|)Dx�n(A).
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Analytic strongly dominating sets

Lemma

Let A ⊆ ωω and denote Φ(A) = {x ∈ ωω : (∀∞k ∈ ω)Dx�k(A)}.
Then A \ Φ(A) ∈ D.

Definition

For a family A ⊆ P(ωω) by induction on α < ω1 we define

SA,0 = {s ∈ <ωω : (∃A ∈ A)Ds(A)},

SA,α =
{
s ∈ <ωω : (∃∞k ∈ ω) s_〈k〉 ∈

⋃
β<α

SA,β

}
,

ρA(s) = min {α ≤ ω1 : s ∈ SA,α or α = ω1} , for s ∈ <ωω.

Remark

ρA(s) < ω1 ↔ (∃∞k ∈ ω) ρA(s_〈k〉) < ρA(s) for every s ∈ <ωω.
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Michal Dečo, Miroslav Repický (Košice) Strongly Dominating Sets of Reals January 28, 2013 8 / 16



Lemma

If A ⊆ P(ωω) and |A| < b, then Ds (
⋃
A) holds if and only if ρA(s) < ω1.

Sketch of the proof

1 Assume Ds(
⋃
A) and ρA(s) = ω1.

2 Define f : <ωω → ω as follows:

f(t) =

{
min{m ∈ ω : (∀k ≥ m) ρA(t_〈k〉) = ω1}, if ρA(t) = ω1,

0, otherwise.

3 Ds(
⋃
A ∩

⋃
A∈AΦ(A)) holds, since⋃
A \

⋃
A∈A

Φ(A) ⊆
⋃
A∈A

(A \ Φ(A)) ∈ D.

4 Find x ∈
⋃
A∩

⋃
A∈AΦ(A)∩ [s] such that (∀n≥|s|)x(n)≥f(x � n).
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Corollary

If A ⊆ P(ωω), |A| < b and Ds(
⋃
A), then there is a well-founded

tree q ⊂ <ωω with stem s such that

1 every non-maximal t ∈ q with t ⊇ s is a splitting node,

2 for every maximal t ∈ q there is an A ∈ A such that Dt(A) holds.

We call this tree an A-tree.

Definition

Let κ be an infinite cardinal. A subset of a Polish space X is κ-Suslin,
if it is a continuous image of ωκ (see [3]).

Theorem

Let s ∈ <ωω be arbitrary. If a set A ⊆ ωω is κ-Suslin for some κ < b,
then the following conditions are equivalent:

1 Ds(A) holds.

2 There is a Laver tree p ⊆ <ωω with stem s such that [p] ⊆ A.
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Michal Dečo, Miroslav Repický (Košice) Strongly Dominating Sets of Reals January 28, 2013 11 / 16



s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =

⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1 f([t1]) ∩ [s1] =
⋃
α<κ f([tα2 ])

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1 f([t1]) ∩ [s1] =
⋃
α<κ f([tα2 ])

{f([tα2 ]) : α < κ}-tree

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1 f([t1]) ∩ [s1] =
⋃
α<κ f([tα2 ])

{f([tα2 ]) : α < κ}-tree

s2

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1 f([t1]) ∩ [s1] =
⋃
α<κ f([tα2 ])

{f([tα2 ]) : α < κ}-tree

s2

s = s0 A ∩ [s0] = f(ωκ) ∩ [s0] = f([∅]) ∩ [s0] =
⋃
α<κ f([tα1 ])

{f([tα1 ]) : α < κ}-tree

s1 f([t1]) ∩ [s1] =
⋃
α<κ f([tα2 ])

{f([tα2 ]) : α < κ}-tree

s2
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Thank you for your attention.
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Comparison of ideals D and l0

Definition

Denote (see [1])

l0 = {X ⊂ ωω : (∀q ∈ L)(∃r ∈ L) r ⊆ q and [r] ∩X = ∅}.

Remark

It is easy to see that D ⊆ l0 and D ∩Σ1
1 = l0 ∩Σ1

1.

Theorem ([1])

t ≤ add(l0) ≤ cov(l0) ≤ b and non(l0) = c.
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Definition

For a function g : <ωω → 2 let p(g) be the Laver tree with stem ∅
recursively defined as follows:

1 ∅ ∈ p(g),

2 if t ∈ p(g) and m ∈ ω, then t_〈m〉 ∈ p(g) iff m ≡ g(t) mod 2.

Lemma

Let G be the set of functions g : <ωω → 2 of cardinality less than c
and let A = ωω \

⋃
g∈G[p(g)]. Then Ds(A) holds for every s ∈ <ωω.

Theorem

D 6= l0.
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Thank you for your attention, again.
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