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Sequence Selection Principles

A.V. Arkhangel’skii [1972]
properties (1) — (aa)
Fori = 1,2, 3,4, atopological space Y is («;)-space if for any sequence (S, : n € w)

of sequences converging to a point y € Y, there exists a sequence S converging to y
such that:

(1) Sp \ Sis finite for all n € w;

(ag) Sp N Sisinfinite for all n € w;

(a3) Sy N Sis infinite for infinitely many n € w;
(awa) Sn NS # O for infinitely many n € w.

D.H. Fremlin [1994]
equivalent conditions to an s;-space

M. Scheepers [1997]
Sequence Selection Property SSP, Monotonic Sequence Selection Property MSSP
A topological space X has sequence selection property, if for any z € X and for any

sequence (S, : n € w) of sequences converging to x there is a sequence {z,}22
suchthatz, — zand z, € Sy, forany n € w.



All spaces are assumed to be Hausdorff and infinite.

Diagrams hold for perfectly normal space.

XR the space of all real-valued functions on X (Tychonoff topology =
t. of pointwise convergence)

Cp(X) the space of all continuous functions on X (subspace topology)
B the space of all Borel functions on X (subspace topology)
u the space of all upper semicontinuous functions on X  (subspace topology)

with values in [0,1]



J. Gerlits and Zs. Nagy [1988], D.H. Fremlin [1994],
M. Scheepers [1998], [1999]
For a topological space X the following are equivalent.
(1) X is an s;-space.
(2) Cp(X) has the sequence selection property.
(3) Cp(X) possesses (c2).
(4) Cp(X) possesses (a3).
(5) Cp(X) possesses (cws).




perfectly normal space X

M. Scheepers [1998] M. Scheepers [1999] M. Scheepers [1999]

L. Bukovsky and J. Hale$ [2007] D.H. Fremlin [2003] L. Bukovsky, I. Reclaw and

M. Sakai [2007] L. Bukovsky and J. Hales [2007] M. Repicky [2001]

B. Tsaban and L. Zdomskyy [2012] L. Bukovsky and J. Hale$ [2003]
| Cp(X) possesses (a1). | | Cp(X) possesses (a2). | | Cp(X) possesses MSSP. |
[ Xis a QN-space. [ X is a wQN-space. }>[ X is an mQN-space. |

b-Sierpinski set ~-set compact set

X is ao-set X is perfectly meager X has count. Menger property

X is zero-dimensional



Convergence of (f, :ncw), fo,f: X =R

Pointwise convergence P fn -, f

(Vz € X)(Ve > 0)(3no)(Vn € w)(n > ng — | fu(z) — f(x)] <€)

Quasi-normal convergence Q fn & f
there exists (e, : n € w) converging to 0 such that

(Vo € X)(Ing)(Vn € w)(n > no — |fno(z) — f(z)| < en)

Discrete convergence D fn 3 f

(V2 € X)(3no)(Vn € w)(n > ng — fa(z) = f(z))

. M
Monotonic convergence M fn— f

o2 fand foi1 < fnforanyn € w



Properties AB(F,G) and wAB(F,G)

fo,1 fo,2 fo,3 fo,m A, fo A,B € {P,QD}
f1,0 fi1 f1,2 f1,3 @ A, f1 pointwise P
A quasi—normal Q

f2,0 f21 f2,2 @ f2,m — f2

: - : discrete D
Fno  Fan 2 fns e A

: : : A C XR

X X X \S l “F’g =

7 0eF,Gg

X has property AB(F.Q) if for any fn,m € Cp(X), fn € F, f € G such that
A A
fn,m — fnforeveryn e wand f,, — fonX

there exists an unbounded 8 € “w such that f,, gn) i fonX.

X satisfies principle wAB(F,G) if . .. there exists an increasing a € “w and
an unbounded 8 € “w such that fq(n),g(n) B fonX.



Sequence selection property PP({0},{0})

was considered by A.V. Arkhangel'skil [1972] as property (az2) for C,(X) or
M. Scheepers [1997] as sequence selection property for C,(X).

Sequence selection property wPP({0},{0})
was considered by A.V. Arkhangel'skil [1972] as property (a4) for C,(X).

Sequence selection property DP({0},{0})
was considered by L. Bukovsky and J. Hale$ [2007] as discrete sequence selection
property.

Sequence selection properties AB(XR,XR) and AB(XR,{0})
were considered by L. Bukovsky and J.S. [2012] as ASB and ASB* selection principles.



frnm € Cp(X),n,m € w, fr,m i fn foreveryn € wand fy, i fonXx

fn are F,-measurable functions on X

f is in second Baire class of functions on X

We will use B instead of XR.



DD(F,G)

l

PQ(F.9) —— QQ(F.9) —— DQ(F.9)

! ! l

PP(F,G) — QP(F,G) ——— DP(F,G)

If 71 C 75 and G1 C G then

AB(F2,G2) — AB(F1,G1) and wAB(F2,G2) — WAB(F1,G1).

The family of sequence selection properties AB(F.,G) and wAB(F,G) can be partially
preordered by the relation
A<D=ZFC+-D — A.

Corresponding partially ordered set:

maximal elements are the equivalence classes of PQ(3,) and DD(13,5)
the smallest element is the equivalence class of wDP({0},{0})



maximal elements the equivalence classes of PQ(3,8) and DD(13,8)
the smallest element the equivalence class of wDP({0},{0})

L. Bukovsky — J.S. [2012]

A perfectly normal space X has property PQ(B,B) if and only if X is a QN-space.
A perfectly normal space X has property DD(3,B) if and only if X is a QN-space.

Corollary L. Bukovsky, I. Reclaw and M. Repicky [1991]
Any b-Sierpinski set has all selection properties AB(F,G) and wAB(F.G).

L. Bukovsky — J. Hale$ [2007], J.S. [o0]
A topological space X has property wDP({0},{0}) if and only if X is a wQN-space.

R. Laver [1976], A. Dow [1990], B. Tsaban and L. Zdomskyy [2012]

AB(F,G) = MN(Q,H) = wAB(F.G) = wMN(Q,H) holds in Laver model.

A.W. Miller and B. Tsaban [2010]
In Laver model, a perfectly normal space X has AB(F,G) if and only if | X| < b.

L. Bukovsky, I. Reclaw and M. Repicky [1991]

A topological space X is a QN-space (a wQN-space) if each sequence of continuous real-valued functions
converging to zero on X is (has a subsequence) converging quasi-normally.

Aset X C Ris b-Sierpinski setif | X| > b and |A N X| < b for any Lebesgue measure zero set.



AB({0}.G) = AB({0},{0}) wAB({0}.G) = wAB({0},{0})

G C F, G C Cp(X), Fis closed under subtraction (L. Bukovsky — J.S. [2012])

AB(F.G) = AB(F.{0}) wAB(F.,G) = wAB(F.{0})

wAB({0},{0}) = AB({0},{0})

(A,B) 7é (P7Q)! -7: g CP(X)

AB(F.G) = AB(F.{0}) = AB({0}.{0}) = wAB(F.G) = wAB(F,{0})



F,G € {B,Cp(X),{0}}

QN > DQ(B.,B)
! !

PP(B.B) —> QP(B,B) — DP(B.,B)

PP(B.{0}) DP(5,{0}) — wQN




v-set

!

QN — hSl(F, F) e Sl(F,F) wQN Z/{fm(Ow,F)

l

o-set

J. Gerlits and Zs. Nagy [1982]
A topological space X is a vy-space if any open w-cover of X contains y-subcover.

M. Scheepers [1996]

A topological space X is an S; (T, I')-space if for every sequence (A, : n € w) of open
~-covers of X there exist sets U,, € A,,,n € w such that {Uy; n € w} is a y-cover.

A topological space X possesses Uy;, (O, T) if for any sequence (U, : n € w) of
countable open covers not containing a finite subcover there are finite sets

Vn C Up,n € wsuchthat {J Vn; n € w}is a~-cover.

For a property A of a topological space X we say that X is hereditarily .A-space,
shortly h.A-space, or X possesses A hereditarily if any subset of X is an .A-space.

A topological space X is a o-set if every F, subset of X is a G5 setin X. (<1933)
A cover A of X is an w-cover if for any finite subset F" of X thereis A € A suchthat ¥ C A.
An infinite cover A is a y-cover if every z € X lies in all but finitely many members of A.



y-set

l

hSl(F, F) —_— Sl(F,F) wQN Z/{fm(Ow,F)

l

o-set

QN

F. Galvin and A.W. Miller [1984], W. Just, A.W. Miller, M. Scheepers and
P.J. Szeptycki [1996], M. Scheepers [1998], T. Orenshtein and

B. Tsaban [2011]

If p = b then there is a v-set of reals of cardinality b which is not a o-set.

A topological space X is a y-space if any open w-cover of X contains ~-subcover.

A topological space X is an S (T, I')-space if for every sequence (A, : n € w) of open ~-covers of X there
exist sets U, € Ay, n € wsuchthat {U,; n € w} isa ~y-cover.

A topological space X possesses Uy, (O, T') if for any sequence (U,, : n € w) of countable open covers not
containing a finite subcover there are finite sets V,, C U,,,n € w suchthat {{J V5; n € w} isa~y-cover.

For a property A of a topological space X we say that X is hereditarily .A-space, shortly h.A-space, or X
possesses A hereditarily if any subset of X is an .A-space.

A topological space X is a o-set if every F, subset of X is a G5 setin X. (<1933)
A cover A of X is an w-cover if for any finite subset F' of X thereis A € A suchthat F C A.

An infinite cover A is a y-cover if every z € X lies in all but finitely many members of A.



Corollary

Ind(X) = 0 for any normal space X having any of the selection properties AB(F,G) or
wAB(F,G). A subset of metric separable space having any of the selection properties
AB(F.,G) or wAB(F,G) is perfectly meager.

J.8. [q]
A perfectly normal space X having wDP(£,{0}) is an S; (T, I")-space.

L. Bukovsky — J.S. [2012]
If a perfectly normal topological space X has wDP(/,8) or DP(4,{0}) then X is a o-set.

Corollary

If a perfectly normal space X has wDP(U,BB) or DP(U,{0}) then X is hereditarily
S1 (I, I')-space.

J.S. [o0]

If a perfectly normal topological space X has wDP(£,{0}) then every open ~-cover of
X is shrinkable.

J.8. []

Let X be a topological space. If X has wDD({0},{0}) or PQ(C,(X),{0}) then X is
a QN-space.

A cover B is said to be a refinement of A if forany V' € Bthereis U € A suchthat V' C U.
A ~-cover A is shrinkable if there exists a closed ~-cover B which is a refinement of A.



Surprising result

J.8. []
Any v-set has property wPQ(5B,{0}).

AB({0},{0}) = wAB({0},{0})
AB(Cp, (X),B) = wAB(Cp (X),B)

for (A, B) # (P,Q) : AB(Cp(X),{0}) = wAB(Cp(X).{0})

QN — PP(B,{0}) —» DP(B,{0}) —> hS;(I',I')—> o-set
H It I I

~ —= wPQ(B,{0}) —> wPP(B,{0}) —» wDP(B,{0}) —> S;(I,I')—= wQN



Distinguishing

’ p=250,(A,B)#(P,Q),B # D‘ / WAB(B,8) \

QN = PQ(Cp(X).{0}) — AB(B.B) hS1 (T, T) — o-set

AB(B,{0})

ot

WQN = wPQ(Cp (X).{0}) = AB(Cp(X).{0}) = AB({0}.{0}) = PQ({0}.{0})

Miller model, (A,B) # (P,Q), B # D ‘ A.W. Miller [1979]

QN = PQ(Cp(X).{0}) = AB(B,B) = wAB(B,B) = AB(B,{0}) = h$; (', I") = o-set

! f

WQN = wPQ(Cp (X),{0}) = AB(Cp(X),{0}) = AB({0},{0}) = PQ({0}.{0})



perfecly normal space X

X is a QN-space X has PQ(B,B)
X is hereditarily S; (I", I")-space X has PP(U4,{0})
X isan Sy (T, T")-space and X has wPQ(U.{0})

every open ~y-cover of X is shrinkable

X is a wQN-space X has PP({0}.,{0})

J. Hale$ [2005], H. Ohta and M. Sakai [2009], L. Bukovsky and J.S. [2012]

L. Bukovsky - J.8. [2012]
J.8. []
J.S. [00]

M. Scheepers [1999],
D.H. Fremlin [2003]



Properties ABC(F,G) and wABC(F,G)

fo,1 fo,2 fo,3 fo,m A,

f1,0 fi1 f1,2 f1,3 @ A
f2,0  f2;1 f2,2 @ f2,m A

frn,0  fna frn,2  fn,3 A,

fo

f1

f2

A,B,C € {P,Q,D,M}
pointwise P
quasi—normal Q
discrete D

monotonic M

F,G CXR

0eF,g

X has property ABC(F,G) if for any fn.m € Cp(X), fn € F, f € G such that

Frm 5 foforevery n € wand fn 2 fon X

there exists an unbounded 8 € “w such that f,, g(n) & fonX.

X satisfies principle wABC(A,B) if ... there exists an increasing o € “w and

an unbounded 8 € “w such that fq(n),g(n) < fonX.



perfecly normal space X

X is a QN-space
X is hereditarily S; (T", I')-space

X isan Sy (I', I")-space and
every open ~y-cover of X is shrinkable

X is a wQN-space

X possesses Hurewicz property hereditarily

X possesses Hurewicz property and
every open ~y-cover of X is shrinkable

X possesses USC,,, and Hurewicz property

X possesses Hurewicz property

X has PQ(B,B)
X has PPU,{0})

X has wPQ(U,{0})

X has PP({0},{0})

X has MPP(13,{0})

X has wMPP(B,{0})

X has MMP(B,{0})

X has MMP({0},{0})

L. Bukovsky - J.S. [2012]
4.8, [e0]

J.8. [0]

M. Scheepers [1999],
D.H. Fremlin [2003]

J.8. [0]

J.S. [00]

J.8. [o0]

M. Scheepers [1997]

J. Hale$ [2005], H. Ohta and M. Sakai [2009], T. Orenshtein and B. Tsaban [2011], B. Tsaban and
L. Zdomskyy [2012], L. Bukovsky and J.S. [2012], M. Scheepers [1997]

Hurewicz property = property U ;,, (Ow, I')

Property USC,,, introduced and investigated by H. Ohta and M. Sakai [2009].



M. Scheepers [1999],D.H. Fremlin [2003] B#D
op- X satisies AB({0},{0}) if and only if X is a wQN-space.

sp. X
J.S. [] X is a wQN-space if and only if X has wPQ(C,(X),{0}).

L. BUKOVSky _ Jé [201 2] X has DD(.F,Q) if and Only if Xisa QN'SpaCe.

p.n.
sp. X

X has wDD(F,G) if and only if X is a QN-space.

L. Bukovsky — J.S. [2012], JSs. [co] X has PQ(F.G) if and only if X is a QN-space.
Cp(X)CF X has wPQ(F,B) if and only if X is a QN-space.

L. Bukovsky — J.S. [2012]
X is a QN-space if and only if X has wQQ(3,B) if and only if X has QQ(B,5).

QQ(B.{0}) = DQ(B.{0}) = QP(B.{0}) = DP(B.{0})

L. Bukovsky — J.S. [<]
wQQ(B,{0}) = wDQ(B,{0}) = wQP(,{0}) = wDP(13,{0})

J.S. [] B#D
If (A,B) # (P,Q) then X has AB(,{0}) if and only if X is hereditarily S; (", I")-space.

X has wABU,{0}) if and only if X is an S; (T", I")-space and
every open ~-cover of X is shrinkable.



Application

1) some principles can be described by sequential closure operator in XR
2) an alternative proof of Tsaban—Zdomskyy Theorem

3) an alternative proof of strengthened Reclaw Theorem
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Let X be a topological space.

D.H. Fremlin [1994], M. Scheepers [1999]
X has PP{0}{0} if and only if scl.,; (A, Cp (X)) = scli (A, Cp(X)) for every A C Cp(X).

J.S. []
X has wPP(3,8) if and only if scl.,, (4, XR) = scly (4, XR) for every A C Cp(X).

X has wPP(3,{0}) if and only if scl2 (4, XR) N Cp(X) = scly (A4, XR) N Cp(X) for any
A C Cp(X).

ACY: scd(AY)={yeY; Hyn}lo € “A) yn — y}

sclp(A,Y) = A, scla(A,Y) = scl < U sc]g(A,Y),Y> ,a>0
B<a



T. Orenshtein [2009]

X possesses property (ISJ(JJ) if for any set A C Cp(X) \ {0} with 0 € scly,, (A, XR)
there is a sequence (f, : n € w) of functions from A such that f,, — 0.

J.S. []

The statements

“sclyy (A, XR) = scly (A, XR) for every A C Cp(X) for any perfectly normal
S1 (I, T')-space X,
“scly, (4, XR) = scly (A, XR) for every A C C,(X) for any perfectly normal space X
possessing (?g)

are undecidable in ZFC. The theory
ZFC+-*any perfectly normal S (T', T')-space possesses (IS,%)
is consistent with ZFC.

Solutions and partial solution to Problems 6.0.15, 6.0.16 and 6.0.17 of
T. Orenshtein [2009].

ACY:isc(A,Y)={y€Y; C{yntnto € “A) yn — y}

sclp(A,Y) = A,sclq (A, Y) = scl ( U sclﬁ(A,Y),Y> ,a >0
B<a



Application

1) some principles can be described by sequential closure operator in X R
2) an alternative proof of Tsaban—Zdomskyy Theorem

3) an alternative proof of strengthened Reclaw Theorem



B. Tsaban — L. Zdomskyy [2012], announcement 2006

If X is a perfectly normal topological space, then X is a QN-space if and only if any
Borel measurable function f : X — “w is eventually bounded.

L. Bukovsky — J.S. [o0]
A topological space X possesses the JR-property if every AJ measurable real function
defined on X is a discrete limit of a sequence of continuous functions.

J.E. Jayne and C.A. Rogers 1982 Any analytic subset of a Polish space has the JR-property.

L. Bukovsky, I. Reclaw and M. Repicky [2001]

If X is a perfectly normal topological space, then X is a QN-space with the JR-property
if and only if any Borel measurable function f : X — “w is eventually bounded.

L. Bukovsky — J.S. [2012]
Any QN-space has property QQ(B,5).

L. Bukovsky — J.S. [2012]
If a perfectly normal space X has QQ(B,B), then X has the JR-property.
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I. Reclaw [1997], L. Bukovsky, |. Reclaw and M. Repicky [2001],
J. Hale$ [2005]
A perfectly normal QN-space is a o-space.

L. Bukovsky — J.S. [2012]
Any QN-space has property QQ(B,5).

L. Bukovsky — J.S. [2012]
If a perfectly normal topological space X has wDP(U,B) then X is a o-set.
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