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III. not PFA

forcing over PFA

Velickovic defined a poset P2 by p ∈ P2 is a map with no fixed
points and p2 = p; henceforth, let ιn = [2n,2n+1)

p : ιn 7→ ιn and lim sup |ιn \ dom(p)| is infinite.

P2 is ordered by ⊃∗ (i.e. p < q if p ⊃∗ q)

set ap = {i : i < p(i)} and bp = {i : p(i) < i} ( p(ap) = bp).

If G ⊂ P2 is generic, then x = {N \ dom(p) : p ∈ G} is an
ultrafilter on N, and 〈x , x〉 ∪

⋃
p∗ is an autohomeomorphism on

N∗ with unique fixed point x .

Of course, x is a propeller point: A⊕x B where
A = {x} ∪

⋃
p∈G a∗p and B = {x} ∪

⋃
p∈G b∗p.

Question 1 could such a point be selective?
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III. not PFA

2-to-1 image which is not N∗?

A minor modification, P2,2, is to add two (or finitely many)
ultrafilters, a minor change

lim sup |ι2n \ dom(p)| and lim sup |ι2n+1 \ dom(p)| are both
required to be infinite (same as P2 × P2).

Let E =
⋃

n ι
2n and O = N \ E

We get x1 with the base {E \ dom(p) : p ∈ G} and x2 has the
base {O \ dom(p) : p ∈ G}

So E∗ ≈ A1 ⊕x1 B1 and O∗ ≈ A2 ⊕x2 B2

ask: is A1 ⊕x1
x2

B2 6≈ N∗

I (and others) knew long ago that this was true BUT!! I had to
learn all these methods better
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III. not PFA

many variants exist

p ∈ P4 (replacing ιn by [4n,4n+1)) by keeping everything else
the same except requiring that each i ∈ dom(p) has an orbit of
size 4.

Force with P2 × P4 to again get x1 and x4; but x4 would be a
4-point but still can define A2 ⊕x4 B2 but each of these would be
split as well A2 = A2,1 ⊕x4 A2,2 and B2 = B2,1 ⊕x4 B2,2 and
A1 ⊕ B2 would then be a 3-point

and “everyone knows” that P2 × P4 would not add a 3-point to
N∗ and so this would be a much more instructive example of a
2-to-1 image which was not homeomorphic to N∗.

although, P3 does add a 4-point
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III. not PFA

many but not so many automorphisms

We are progressing from two papers:

[Shelah-Steprans] Force with P2 over PFA then there is a
non-trivial automorphism but each automorphism is
somewhere trivial.

[Steprans] Force over PFA with Pκ
2 (countable support product),

then the number of automorphisms is κω (which can be less
than 2c).

I was intrigued by the quote: P2 adds an automorphism “while
doing as little else as possible”.
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III. not PFA

Two other modifications
p ∈ P0 if p : dom(p) 7→ 2

and p ∈ P1 if p : dom(p) 7→ 2; |p−1(1) ∩ ιn| ≤ 1 for all n, and
lim inf{|ιn \ dom(p)| : p−1(1) ∩ ιn = ∅} is infinite.

force over PFA results (and more questions)

with P1: there is an embedding of N∗ as a regular closed set
A ⊂ N∗ with a single point as the boundary. (indeed, simply
{x} ∪

⋃
p∈G

(
p−1(1)

)∗)
with P0, P1 gives models in which automorphisms are trivial.

all variants gives triv(Φ) is a ccc over fin Pω2-ideal

Conjecture: all automorphisms are FINITE over fin.

Questions galore: e.g. force with P2, is every 2-point
RK-equivalent to the generic x?
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III. not PFA

PFA creates conditions in the poset

A natural fusion process goes something like this:

Define p <k ,n q (for n, k ∈ ω) if p ⊃ q and for each j ≤ k ,
p � ιj = q � ιj and |ιk \ dom(q)| > n

For a sequence {pn, kn}n such that pn+1 <kn,n pn, getting pn+1
deciding max possible! then

⋃
n pn � max(ιkn) is in the poset.

So it follows easily that P is ℵ1-closed and does not add
subsets of N (just new ultrafilters and maps on N).

We will use the Shelah-Steprans technique for producing new
elements of P (representing one of the posets described
above). It uses the CH trick.
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III. not PFA

the poset P(F) and CH trick

Let H ⊂ <ω12 be a generic filter (so no change to P) and then let
F be a generic filter for P (or use ♦ to construct, so it’s in V [H]).

Now we let P(F) simply be the collection F ⊂ P ordered by ⊃
(true inclusion); we’ll start using f ,g to refer to its elements.

E.G. Let M ≺ H(θ) be a countable elementary submodel and
ḣ ⊂ ω × ω × P (a potential name for a member of ωω). There is
an f ∈ P and h ∈ ωω so that

f 
P f is (M,P(F)) -generic

and f 
P(F) if ḣ ∈ ωω, then ḣ < ȟ

or, if ḣ is a code for a dense Gδ in R, then there can be an r
such that f 
 r ∈ dḣe
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III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F .

Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA


 P(F) is ωω-bounding and preserves category

It’s a simple matter to force an I ⊂ N so that lim sup |ιn \ I| is
infinite, and I ⊃∗ dom(f ) for all f ∈ F . Thus, if FG ⊂ F is
P(F)-generic, pF =

⋃
{f � I : f ∈ FG} is a special member of P.

How special? For any prescribed family D of < ℵ2 dense open
subsets of P, pF ∈

⋂
D (and whatever else we can make it

force)

Thus P is ℵ2-distributive (preserves MA(ω1) and cardinals).

This shows that MA +¬CH does not imply all automorphisms
are trivial.

Question 2 Does MA +¬CH imply P(N) is not c-universal?



III. not PFA

sample preservation of PFA theorems

P = P2 preserves that there are no (ω1, ω2)-gaps.

but it adds an (ω2, ω2)-gapLet {ċα : α ∈ ω1} and {ḋβ : β ∈ ω2} be the names

We can assume there is f0 ∈ F such that f0 forces a value cα
on ċα for all α ∈ ω1.

Pass to the extension V [H] and note that {cα : α ∈ ω1} and
{dβ : β ∈ λ = ω̌2} is a gap (where dβ = valF ḋβ).

As we know, there is a proper poset Q which will freeze this
gap. Meeting ω1 many dense sets of <ω12 ∗ P ∗Q will choose
the F and produce a frozen gap: {cα,dβ : α, β ∈ ω1 × λ}. So
IF there was a pF for that collection F , then we have that it
forces there is no ḋλ. But Q might force that P(F) is not proper.
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on ċα for all α ∈ ω1.

Pass to the extension V [H] and note that {cα : α ∈ ω1} and
{dβ : β ∈ λ = ω̌2} is a gap (where dβ = valF ḋβ).
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on ċα for all α ∈ ω1.

Pass to the extension V [H] and note that {cα : α ∈ ω1} and
{dβ : β ∈ λ = ω̌2} is a gap (where dβ = valF ḋβ).
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forces there is no ḋλ. But Q might force that P(F) is not proper.



III. not PFA

sample preservation of PFA theorems

P = P2 preserves that there are no (ω1, ω2)-gaps.

but it adds an (ω2, ω2)-gap
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As we know, there is a proper poset Q which will freeze this
gap. Meeting ω1 many dense sets of <ω12 ∗ P ∗Q will choose
the F and produce a frozen gap: {cα,dβ : α, β ∈ ω1 × λ}. So
IF there was a pF for that collection F , then we have that it
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III. not PFA

Fundamental local Lemma for P(F)

Thus, the method requires us to work in the model we get after
forcing with P(F).

e.g. Let I be a P-ideal.

For each P(F)-name ḣ ∈ NN and gap I ⊥ J there are
{nk} ↗, I, J ∈ I × J and f ∈ F such that either

1. f 
P(F) ḣ �
⋃
{[nk ,nk+1)∩(I ∪ J) : k ∈ K} /∈ V for each

infinite K ⊂ ω (since 2nk << nk+1) or
2. for each i ∈ [nk ,nk+1) and each g < f such that g forces a

value on ḣ(i), f ∪ (g � [nk ,nk+1)) also forces a value on ḣ(i)
(with a single ∅ 6= ιmk ⊂ [nk ,nk+1) \ dom(f ))

Apply to gaps: obviously Case 1 implies that ḣ−1(0) does not
split the gap. But similarly with Case 2 because ...
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III. not PFA

{cα, dβ : α ∈ ω1, β ∈ ω2} not a gap

otherwise

Y = {i : (∃g < f ) g 
 ḣ(i) 6= 0} is in V and will
contain each J ∈ J , and so meet I for some I ∈ I.

Therefore there is an infinite K ⊂ ω such that for each k ∈ K
there is an ik ∈ Y ∩ I ∩ [nk ,nk+1). For each k ∈ K , choose
f ⊂ gk 
 ḣ(ik ) 6= 0 and set f̄ = f ∪

⋃
k∈K gk � [nk ,nk+1)

(f̄ ∈ P by simply shrinking K ).

Thus! after forcing with P(F), we then select proper poset Q to
freeze the gap, then force with the nice σ-centered poset to get
pF which forces that {cα : α ∈ ω1} and {dβ : β ∈ λ} is a gap
(and so ḋλ can’t exist).
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III. not PFA

What Steprans did in V [H]

For the remainder, assume that Φ is the valuation by F of a
P-name of a lifting of an automorphism on P(N). For each
b ∈ P(N), we have arranged that valF (Φ) � P(b) is trivial iff
some f 
P Φ � P(b) is trivial.

Pass to the extension by P(F). We only have that Φ is defined
on V ∩ P(N). But this set of reals is not meager and the
ωω-bounding property ensures that one can still attempt to build
A = {aα, xα : α ∈ ω1} ⊂ V ∩ P(N) so that forcing with QA will
introduce X so that Φ(X ) would have to split the gap
{Φ(xα),Φ(aα\xα) : α ∈ ω1},which we can now freeze.

Corollary: Since we fail, the ideal of sets on which Φ � V is
σ-Borel is ccc over fin holds in the extension by P(F),
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III. not PFA

so what! P2(F) does force Φ � V to be trivial

Let G be P(F)-generic.

local Lemma on steroids Assume that b ∈ V ∩ P(N) is such
that Φ � [V ∩ [b]ω] has a σ-Borel lifting in V [G]. Then, in V ,
there is an f ∈ F and an increasing sequence {nk : k ∈ ω} ⊂ ω
such that Φ is trivial on each a ∈ [b]ω for which there is an
g ∈ F , such that a ⊂

⋃
{[nk ,nk+1) : [nk ,nk+1) ⊂ dom(g)}.

Pulling this back and up to the generic extension by P, this
describes a dense Pω2-ideal, J, contained in triv(Φ).

But still a lot can happen in the large complement. Remember
we have the generic ultrafilter x , which induces an ultrafilter y
by the finite-to-one map ψ([nk ,nk+1)) = k , and so the behavior
of Φ on the large set y − lim{[nk ,nk+1) : k ∈ ω} is still unknown,
and this is where we expect all the action to be.
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III. not PFA

we work in V [H] and investigate 
P(F)

But we have gained a (surpising) lot: For each I ∈ triv(Φ), let hI
denote the function on I inducing Φ � P(I).

Theorem: There is a P(F)-name ḣ ∈ NN which is forced to
mod finite contain hI for all I ∈ triv(Φ).

So our challenge has been reduced to understanding when ḣ
exists. (It’s valuation does not exist in V [H])

The proof follows our pattern: We have our dense Pω2-ideal of
functions. If forcing with P(F) adds no extension, then there is
a proper poset freezing this fact. Meeting ω1 many dense sets
pulls back to an ℵ1-sized subfamily of our dense Pω2-ideal
which can not have a common extension – contradicting that it’s
a Pω2-ideal.
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exists. (It’s valuation does not exist in V [H])

The proof follows our pattern: We have our dense Pω2-ideal of
functions. If forcing with P(F) adds no extension, then there is
a proper poset freezing this fact. Meeting ω1 many dense sets
pulls back to an ℵ1-sized subfamily of our dense Pω2-ideal
which can not have a common extension – contradicting that it’s
a Pω2-ideal.



III. not PFA

we work in V [H] and investigate 
P(F)

But we have gained a (surpising) lot: For each I ∈ triv(Φ), let hI
denote the function on I inducing Φ � P(I).

Theorem: There is a P(F)-name ḣ ∈ NN which is forced to
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making sense of ḣ from local Lemma

For each k we are still assuming there is a single mk such
Sk = ιmk \ dom(f ) ⊂ [nk ,nk+1) is non-empty. and that the
fundamental lemma ensured that

the values of ḣ � [nk ,nk+1) are just determined by functions
s : Sk 7→ Sk

so we can also assume that f 
 ḣ([0,nk ]) ⊂ nk+1 and that for
each j < nk and each s : nk+1 7→ nk+1, such that g = f t s < f ,
if there is no i ∈ ag ∩ nk+1 such that ḣ(i) = j , then this is true for
all f̄ < f t s.

We can now complete the 2-to-1 image problem: obtain
A1 ⊕x1

x2
B2 6≈ N∗ with propellers Ai ⊕xi Bi
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a 2-to-1 image which is not N∗

For this we force with P = P2,2 and assume that we have
A1 ⊕x1

x2
B2 ≈ϕ N∗. This implies the existence of a pair of

homomorphisms, which we combine and call Φ where
Φ1(X )∗ = ϕ−1(X ∗ ∩ A1) and Φ2(X )∗ = ϕ−1(X ∗ ∩ B2).

our ḣ will induce Φ on all X such that X ∗ ⊂ A1 ∪ B2. Let ż
denote the P-name of the ultrafilter on N (ϕ(z) = {x1, x2}) to
which each of x1 and x2 are sent (i.e. Φ(X ) /∈ ż for all X with
X ∗ ⊂ A1 ∪ B2). It follows easily then that for all f and all
X ∈ x1 ∪ x2,
{j : (∃g < f , i ∈ X ) i ∈ a1

g ∪ b2
g and g 
 ḣ(i) = j} is in ż

as above we can assume that f 
 ḣ([0,nk ]) ⊂ nk+1 and that for
each j < nk and each s : nk+1 7→ nk+1, such that g = f t s < f ,
if there is no i ∈ (a1

g ∪ b2
g) ∩ nk+1 such that ḣ(i) = j , then this is

true for all f̄ < f t s.
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We can strengthen f and have
⋃

k [n3k+1,n3k+3) ⊂ dom(f ).

Recall E =
⋃

j ι
2j ∈ x1 \ x2: choose any f̄ < f such that f̄ force

a value on Φ(a1
f ∪ b2

f ) (not in z).

x1 x2
a1

f̄
b2

f̄

ż

Let Y1 = {j : (∃g < f̄ ) (∃i ∈ a1
g) g 
 ḣ(i) = j} and

Y2 = {j : (∃g < f̄ ) (∃i ∈ b2
g) g 
 ḣ(i) = j} (both are in ż)
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fix any j ∈ Y1 ∩ Y2 \ Φ(a1
f ∪ b2

f ), and g1,g2 < f i1, i2 witnessing
j ∈ Y1 ∩ Y2. Let j ∈ [nk ,nk+1) and (wlog) ιmk ⊂ N \ E .

By our construction,
since there is some i with i ∈ a1

g such that g = g1 ∪ f 
 ḣ(i) = j ,

there must be an i ∈ [nk ,nk+2) ∩ a1
f such that g1 ∪ f 
 ḣ(i) = j .

However this contradicts that g1 
 j /∈ Φ(a1
f ∪ b2

f ),

and that f̄ forces ḣ ⊃∗ ha1
f
.

one of the things that is going on is that things about Φ are
forced by P, while things about ḣ are forced by P(F)
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III. not PFA

the hard work begins

next step was: Theorem triv(Φ) is a ccc over fin Pω2-ideal.

but for more control, e.g. there are no 3-points, all
automorphisms are trivial. we have only succeeded with P1 and
P0 (and their products).

Key Lemma The condition f and sequence {nk} ↗ can be
chosen so that there is a partial function ψ : N 7→ N \ dom(f ) so
that for all i /∈ dom(f ), ψ−1(i) ⊂ [nk ,nk+1) for some k , and for
all g < f , g forces a value on ḣ � ψ−1(i) iff f ∪ {(i ,g(i))} forces
this value.

Let L be the domain of ψ. It follows that if Φ is not trivial, then
L /∈ triv(Φ) (but we skip).
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so all automorphisms are trivial

Choose just *any* total function g extending f ; but for
definiteness assume that g(i) = 0 for all i /∈ dom(f ).
This defines a ground model function h as an interpretation of
ḣ, i.e. h(`) = j if ψ(`) = i and f ∪ {(i ,0)} 
 ḣ(`) = j . We know
that this function h does not induce Φ, so it is easy to show that
there is an infinite set Y ⊂ L such that h[Y ] ∩ F (Y ) is empty.

It’s simple enough to now shrink Y and arrange that
K = {k : Y ∩ [nk ,nk+1) 6= ∅} and J =

⋃
k∈K [nk ,nk+1), are such

that f ∪ g � J is a condition. This condition forces that ḣ does
not extend hJ despite the fact that J ∈ J ⊂ triv(Φ).



III. not PFA

a tamer key lemma

We produce f so that g < f decides ḣ(i) so long as i ∈ dom(g).
(assuming g 
 ḣ � dom(g) ∈ V )

We will recursively choose fj < fj−1 < · · · f0 = f . Also, let ikj be
the minimum element of ιmk \ dom(fj−1) (if it exists) and
Kj = {k ∈ Kj−1 : ikj exists}.
We choose fj < fj−1 by a length 2j+1 induction.

For a condition g ∈ P and function ψ ∈ 2j+1, define

gψ by redefining g at all values in {ik` : ` ≤ j , k ∈ Kj} so that
gψ(ik` ) = ψ(`) for all k ∈ Kj (and otherwise agrees with g).

By this process it is a simple matter to ensure that fψj forces a
value on ḣ(ikj ) for all k ∈ Kj . (by the assumption that f forces
that ḣ � {ikj : k ∈ Kj} is in V ).
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When this induction is done, we have an increasing sequence
{kj : j ∈ ω} so that Ij = {ikj

` : ` < j} was successfully chosen.

The union
⋃

j fj is a function (but likely not a condition) but we
can remove the set I =

⋃
j Ij from its domain and let (re-using

the letter) f =
⋃

j fj � N \ I.

We repeat the above fusion exactly except this time the
definition of ikj is the maximum element of ιmk \ dom(fj−1) rather
than the minimum.

And again, we finish the fusion, obtaining a larger function f
and so that ιmk \ dom(f ) ⊂ {ik0 , . . . , ikj } for some j (whose value
diverges to infinity along some set K ).
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III. not PFA

the new point x is not a 3 point

The construction has arranged that for each k and ik` , and each
function s : Sk 7→ 2, each of f ∪ s � (Sk ∩ ik` + 1) and
f ∪ s � (Sk \ ik` ) force a value on ḣ(i). Since they can’t be
different values, it follows that the value of s(ik` ) is really what is
determining ḣ(ik` ) (and we’re done).

Corollary: x is not a 2-point in A

otherwise, ḣ can be assumed to mod fin extend a coherent
family of maps hg : ag 7→ 2 (i ∈ ag if g(i) = 0)

With our condition f as above and I = N \ dom(f ), we partition
I = I0 ∪ I1 by i ∈ I0 iff f ∪ {(i ,0)} 
 ḣ(i) = 0;

by symmetry may assume lim sup |I0 ∩ Sk | is infinite. Then
f ∪ I1 × {1} forces that ḣ is constantly 0 on A \ a∗f
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 ḣ(i) = 0;

by symmetry may assume lim sup |I0 ∩ Sk | is infinite. Then
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