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Densities and submeasures on sets

Definition

A function µ : P(X )→ [0, 1] on a power-set of a set X is called:

monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X ;

subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for any subsets
A,B ⊂ X ;

additive if µ(A ∪ B) = µ(A) + µ(B) for any disjoint subsets
A,B ⊂ X ;

a density on X if µ is monotone, µ(∅) = 0 and µ(X ) = 1;

a submeasure if µ is a subadditive density on X ;

a measure if µ is an additive density on X .

So, all our measures are, in fact, finitely additive probability
measures.
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Invariant densities on groups

Definition

A density µ : P(G )→ [0, 1] on a group G is called

left invariant if µ(xA) = µ(A) for all x ∈ G and A ⊂ G ;

right invariant if µ(Ay) = µ(A) for all y ∈ G and A ⊂ G ;

invariant if µ(xAy) = µ(A) for all x , y ∈ G and A ⊂ X ;

inversely invariant if µ(A−1) = µ(A) for all A ⊂ X ;

auto invariant if µ(h(A)) = µ(A) for any automorphism
h : G → G and any subset A ⊂ X .
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Haar measure of compact topological groups

Theorem (Haar, 1933)

Each compact topological group possesses a unique invariant
probability σ-additive regular Borel measure λ : B(G )→ [0, 1]
defined on the σ-algebra of Borel subsets of G .
The uniqueness of λ implies that it is inversely and autoinvariant.

Problem

What about discrete groups? Do they have any canonical
(sub)measures?
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Banach measures

Theorem (Banach, 1923)

There exists an invariant measure on the group of integers Z.

Definition (von Neuman, 1929; Day, 1949)

A group G is called amenable if it admits a left-invariant measure
µ : P(G )→ [0, 1].

Fact (Classics)

Each abelian group is amenable;

A non-commutative free group is not amenable.
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Invariant submeasures?

Conclusion: There are groups admitting no invariant measure :(

Problem

What about invariant submeasures?
Do they always exist on any group?

Yes! µ(A) =

{
0 if A = ∅
1 otherwise

But this is trivial :(

Problem

Are there any canonical non-trivial and useful invariant submeasure
on a group?

Yes!! ¨̂
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Solecki submeasure on a group

Each group G possesses a canonical invariant submeasure
σ : P(G )→ [0, 1] defined by

σ(A) = inf
F∈[G ]<ω

max
x ,y∈G

|F ∩ xAy |
|F |

.

This submeasure is inversely and auto invariant.
The submeasure σ was thoroughly studied by Solecki and because
of that we decided to name it the Solecki submeasure.

Example

The subset A = 2Z in Z has Solecki submeasure σ(A) = 1
2 .
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An alternative definition of the Solecki submeasure

The Solecki submeasure can be alternatively defined using finitely
supported measures on G instead of finite subsets of G .
A measure µ on a set X is finitely supported if µ(F ) = 1 for some
finite subset F . In this case it can be written as the convex
combination µ =

∑n
i=1 αiδxi of Dirac measures.

By P(X ) we denote the set of all measures on a set X and by Pω(X ) its
subset consisting of finitely supported measures on X .

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

σ(A) = inf
µ∈Pω(G)

sup
x,y∈G

µ(xAy).

This theorem implies that σ is subadditive.
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The subadditivity of the Solecki submeasure

Given any subsets A,B ⊂ G we need to prove that

σ(A ∪ B) ≤ σ(A) + σ(B) + 2ε

for every ε > 0. Using the equivalent definition of the Solecki
submesures, find two finitely supported probability measures
µA, µB ∈ Pω(G ) such that

max
x ,y∈G

µA(xAy) < σ(A) + ε and max
x ,y∈G

µB(xBy) < σ(B) + ε.

Write µA =
∑

i αiδai and µB =
∑

j βjδbj and consider the
convolution measure

µ = µA ∗ µB =
∑
i ,j

αiβjδaibj .
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Observe that for any x , y ∈ G

µ(xAy) =
∑
i ,j

αiβjδaibj (xAy) =
∑
j

βj
∑
i

αiδai (xAyb−1j ) =

=
∑
j

βjµA(xAybj) <
∑
j

βj(σ(A) + ε) = σ(A) + ε

and

µ(xBy) =
∑
i ,j

αiβjδaibj (xBy) =
∑
i

αi

∑
j

βjδbj (a−1i xBy) =

=
∑
i

αiµB(a−1i xBy) <
∑
i

αi (σ(B) + ε) = σ(B) + ε.

Consequently,

µ(x(A ∪ B)y) ≤ µ(xAy) + µ(xBy) < σ(A) + σ(B) + 2ε

and

σ(A ∪ B) ≤ sup
x ,y∈G

µ(x(A ∪ B)y)) ≤ σ(A) + σ(B) + 2ε.
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Consequently,
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σ(A ∪ B) ≤ sup
x ,y∈G
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Left and right Solecki densities

The Solecki submeasure has natural left and right modifications
called the left and right Solecki densities:

σL(A) = inf
F∈[G ]<ω

max
x∈G

|F ∩ xA|
|F |

σR(A) = inf
F∈[G ]<ω

max
y∈G

|F ∩ Ay |
|F |

σL(A) = inf
µ∈Pω(G)

max
x∈X

µ(xA) σR(A) = inf
µ∈Pω(G)

max
y∈X

µ(Ay)

It is clear that σL ≤ σL ≤ σ ≥ σR ≥ σR .
If the group G is abelian, then σL = σL = σ = σR = σR .
The densities σL, σ

L, σR , σ
R are (auto) invariant but not inversely

invariant in general. However

σL(A−1) = σR(A) and σL(A−1) = σR(A).
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Solecki submeasures versus Solecki densities

A group G is called an FC-group if each x ∈ G has finite
conjugacy class xG = {gxg−1 : g ∈ G}.

abelian group ⇒ FC-group ⇒ amenable group

Theorem (Solecki, 2005)

1 A group G is an FC-group if and only if
σL = σL = σ = σR = σR .

2 If G is an amenable group, then σL = σL and σR = σR are
subadditive.

3 If G = F2 is a free group, then σL 6= σL and σR 6= σR and the
densities σL, σ

L, σR , σR are not subadditive.
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The Solecki densities are not subadditive on the free group F2

In the free group F2 = 〈a, b〉 consider the set A of irreducible
words that start with a or a−1.
The set A has right Solecki density σR(A) = 0 since for every set
F = {b, b2, . . . , bn}, n ∈ N, we get supy∈G |F ∩ Ay | ≤ 1 which

implies σR(A) ≤ supy∈G
|F∩Ay |
|F | ≤

1
n . By analogy we can prove

that σR(A) = 0.
Then σL(A−1) = σR(A) = 0 and σL(B−1) = σR(B) = 0 and

F2 = (A ∩ A−1) ∪ (A ∩ B−1) ∪ (B ∩ A−1) ∪ (B ∩ B−1)

is the union of four sets whose left and right Solecki densities are
zero.
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A minimax characterization of Solecki densities

The Kelley intersection number I (F) of a family F of subsets of a
set X is defined as

I (F) = inf
F1,...,Fn∈F

sup
x∈X

1

n

n∑
i=1

χFi
(x).

Theorem (B., 2012)

For a subset A of a group G we get

inf
µ∈Pω(G)

sup
y∈G

µ(Ay) = σR(A) = I ({xA}x∈G ) = sup
µ∈P(G)

inf
x∈G

µ(xA).

Here P(G ) stands for the set of all (finitely additive probability)
measures on X .
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The upper Banach density on an amenable group

The upper Banach density d∗(A) of a subset A of an amenable
group G is defined as

d∗(A) = sup
µ∈Pl (G)

µ(A)

where Pl(G ) denotes the set of all left-invariant measures on X .

It is clear that the upper Banach density d∗ : P(G )→ [0, 1] is a
left-invariant submeasure on each amenable group G .
The Minimax Theorem describing the right Solecki density implies:

Corollary (B., 2013)

For any amenable group G we get σR = σR = d∗.
Consequently the right Solecki density on G is subadditive.
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Solecki-amenable groups

Definition

A group G is Solecki-amenable if its Solecki density σR is subadditive.

Amenable group ⇒ Solecki-amenable

Problem (Solecki, 2005)

Is each Solecki-amenable group amenable?

Theorem (B., 2012)

For a group G the following conditions are equivalent:

1 G is amenable;

2 G × Z is Solecki-amenable;

3 for every n ∈ N there is a finite group F of cardinality |F | ≥ n
such that the product G × F is a Solecki-amenable group;

4 σR(f ) + σR(1− f ) ≥ 1 for any fuzzy set f : G → [0, 1].
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Solecki one, null, and positive sets

A subset A of a group G is called

Solecki null if σ(A) = 0;

Solecki positive if σ(A) > 0;

Solecki one if σ(A) = 1.

Solecki one sets can be characterized as follows:

Proposition

A subset A of a group G is Solecki one if and only if for each finite
subset F ⊂ G there are points x , y ∈ G such that xFy ⊂ A.
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The ideal of Solecki null sets

The subadditivity of the Solecki submeasure σ implies that the
Solecki null sets of a group G form an invariant ideal SG on G .

Problem

Given a group G , study the properties of the ideal SG .
In particular, calculate its cardinal characteristics

add(SG ) = min{|A| : A ⊂ SG , ∪A /∈ SG},
cov(SG ) = min{|A| : A ⊂ SG , ∪A = ∪SG},
non(SG ) = min{|A| : A ⊂ G , A /∈ SG},
cof(SG ) = min{|C| : C ⊂ SG , ∀A ∈ SG ∃C ∈ C with A ⊂ C}.
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cov(SG ) = min{|A| : A ⊂ SG , ∪A = ∪SG},
non(SG ) = min{|A| : A ⊂ G , A /∈ SG},
cof(SG ) = min{|C| : C ⊂ SG , ∀A ∈ SG ∃C ∈ C with A ⊂ C}.
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Cardinal characteristics of the ideal of Solecki null sets

For each infinite group G we get

non(SG ) // cof(SG ) // 2|G |

ω // add(SG ) //

OO

cov(SG ) //

OO

|G |

OO

Example (Not exciting)

For any infinite countable group G
ω = add(SG ) = non(SG ) = cov(SG ) < cof(SG ).

If G is abelian, then ω = add(SG ) = cov(SG ) and non(SG ) = |G |.

Example (Exciting)

For any infinite cardinal κ there is an amenable group G such that
|G | = κ and ω = add(SG ) = non(SG ).
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The exciting example

In the group G = FSκ of finitely supported permutations of the
cardinal κ consider the countable subgroup H = FSω consisting of
all permutations f : κ→ κ with finite support

supp(f ) = {x ∈ κ : f (x) 6= x} ⊂ ω.

It can be shown that σ(H) = 1.
So, H /∈ SG and

ω ≤ add(SG ) ≤ non(SG ) ≤ |H| = ω.

Problem

Calculate cov(SG ) for the group FSκ.
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Solecki null sets in compact topological groups

Theorem

If a group G admits a homomorphism onto an infinite compact
Hausdorff group, then non(SG ) ≥ cov(E).

Here cov(E) denotes the smallest cardinality of a cover of an
infinite compact metrizable group by closed Haar null subsets.
This cardinal was thoroughly studied by Bartoszynski and Shelah.

Corollary

For any infinite cardinal κ the group FSκ admits no homomorphism
onto an infinite compact Hausdorf topological group.

So, the properties of the ideal SG depends essentially on the
topologizability properties of the group G .
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The Solecki submeasure σ versus the Haar measure λ

Let G be a compact topological group and λ be its Haar measure.
For a subset A ⊂ G let Ā be the closure of A in X and
A• (resp. A◦) be the largest open set U ⊂ G such that U \ A is
meager in G (resp. empty).
It is clear that A◦ is the interior of A and A◦ ⊂ A• ⊂ Ā.
Example: Each dense Gδ-set A ⊂ G has A• = G .

Theorem

Any subset A of a compact topological group G has
max{λ∗(A), λ(A•)} ≤ σ(A) ≤ λ(Ā).

Here λ∗(A) = sup{λ(B) : B ⊂ A is a Borel subset in X}
is the lower Haar density of A.
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The Haar measure is determined by the Solecki submeasure

Corollary

Each closed subset A of a compact topological group G has
σ(A) = λ(A).

This means that the Haar measure λ is completely determined by
the Solecki submeasure:

Theorem

For a compact Hausdorff topological group G its Haar measure is a
unique regular σ-additive Borel measure λ such that λ(A) = σ(A)
for each closed subset A ⊂ G .

So, the Haar measure, being a topologo-algebraic object has more
essential algebraic component than could be expected.
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Ramsey Applications

of the Solecki submeasure
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Van der Waerden and Gallai’s Theorem

Theorem (Van der Waerden, 1927)

For any partition Z = A1 ∪ · · · ∪An of integers there is a cells Ai of
the partition containing arbitrarily long arithmetic progressions.

This theorem can be deduced from a more general:

Theorem (Gallai, ≤ 1933)

For any finite partition G = A1 ∪ · · · ∪ An of the group G = Zn

there is a cell Ai of the partition containing the homothetic copy of
each finite set F ⊂ G .
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Homothetic properties of subsets in groups

By a homothetic copy of a set F in a group G we understand the
image h(F ) of F under a polynomial map h : G → G of the form
h(x) = a0xa1 . . . an−1xan for some constants c0, . . . , cn ∈ G .

If n = 1, then h(x) = c0xc1 and we say that h(F ) = c0Fc1 is a
translation copy of the set F .
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Generalizing Van der Waerden and Gallai Theorem

Theorem (B., 2012)

If a subset A of a group G is:

Solecki one, then A contains a translation copy of each finite
subset F ⊂ G ;

Solecki positive, then A contains a homothetic copy of each
finite subset F ⊂ G .

This theorem combined with the subadditivity of the Solecki submeasure

implies the following generalization of Gallai’s Theorem:

Corollary

For any finite partition G = A1 ∪ · · · ∪ An of any group G there is
a cell Ai of the partition containing a homothetic copy of each
finite subset F ⊂ G .
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Green-Tao Theorem

Theorem (Green, Tao, 2008)

The set of prime numbers contains arbitarily long arithmetic
progressions.

Unfortunately, this theorem cannot be deduced from our result
because of:

Proposition

The set of primes is Solecki null in the group Z.
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Steinhaus-Weil Theorem

Theorem (Steinhaus-Weil)

For any measurable subset A of positive Haar measure λ(A) in a
compact topological group G the difference set AA−1 is a
neighboorhood of zero in G .

Problem

Can the Haar measure in this theorem replaced with the Solecki
submeasure σ or the right Solecki density σR?

Answer

Partially Yes! (for the right Solecki density σR).
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Right-Solecki one, null, and positive sets

A subset A of a group G is called

right-Solecki null if σR(A) = 0;

right-Solecki positive if σR(A) > 0;

right-Solecki one if σR(A) = 1 (equivalently, if σR(A) = 1).

Right-Solecki one sets can be characterized as follows:

Proposition

A subset A of a group G is right-Solecki one iff for each finite
subset F ⊂ G there is a point y ∈ G such that Fy ⊂ A.
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Right Solecki density and packing index

For a subset A of a group G the cardinal

packL(A) = sup{|E | : E ⊂ G (xA)x∈E is disjoint}
is called the left packing index of A;

covL(A) = min{|E | : E ⊂ G , EA = G}
is called the left covering number of A.

Theorem

covL(AA−1) ≤ packL(A) ≤ 1

σR(A)
.

Corollary

If an (analytic) subset A a Polish group G is right-Solecki positive,
then AA−1 is not meager
(and AA−1AA−1 is a neighborhood of the unit) in G.
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Protasov’s Problem

Problem (Protasov)

Let G = A1 ∪ · · · ∪ An be a finite partition of a group G . Is
covL(AiA

−1
i ) ≤ n for some i?

Theorem (Protasov-B., ≤ 2003)

For any partition G = A1 ∪ · · · ∪ An of a group G there is i ≤ n
such that covL(AiA

−1
i ) ≤ 22

n−1−1.
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A partial answer to Protasov’s Problem

A subset A ⊂ G is called inner-invariant if ∀x ∈ G xAx−1 = A.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let G = A1 ∪ · · · ∪ An be a partition of a group G. If G is
Solecki-amenable or all sets Ai are inner-invariant, then
covL(AiA

−1
i ) ≤ n for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σR is
subadditive and then σR(Ai ) ≥ 1/n for some i and hence

covL(AiA
−1
i ) ≤ 1

σR(A)
≤ 1

σR(A)
≤ n.

If each set Ai is inner-invariant, then σ(Ai ) ≥ 1
n for some i by the

subadditivity of the Solecki submeasure. The inner invariance of Ai

implies that σR(Ai ) = σ(Ai ) ≥ 1/n and covL(AiA
−1
i ) ≤ 1

σR (A)
≤ n.
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The Bohr topology on a group

The Bohr topology on a group G is the largest totally bounded
group topology on G .

Equivalently, it can be defined as the smallest topology on G in
which every homomorphism h : G → K to a compact Hausdorff
topological group K is continuous.
It this case we can assume that K =

∏∞
n=1 O(n).

Elements of the Bohr topology are called Bohr open subsets of G .
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Difference sets and Bohr open sets

Now we shall generalize results of Bogoliuboff, Følner, Cotlar, Ricabarra

(1954), Ellis, Keynes (1972), Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For each right-Solecki positive set A in an amenable group G there
are a Bohr open neighborhood U ⊂ G of the unit 1G and a
right-Solecki null subset N ⊂ G such that U \ N ⊂ AA−1.

Corollary (B., 2013)

For any right-Solecki positive set A,B in an amenable group G the
set B−1AA−1 has non-empty interior and AA−1BB−1 is a
neighborhood of the unit 1G in the Bohr topology on the group G .

Problem (Ellis)

Is AA−1 is Bohr neighborhood of the unit for each right-Solecki
positive set A in the group G = Z?
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Sumsets and Bohr open sets

The following theorem generalizes results of Jin (2002) and
Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For any right-Solecki positive sets A,B in an amenable group G the
sumset AB contains the intersection U ∩ T for some non-empty
Bohr open set U and some right-Solecki one set T ⊂ G .

Corollary (B., 2013)

For any right-Solecki positive sets A,B in an amenable group G
the set ABB−1A−1 is a neighborhood of the unit 1G in the Bohr
topology on G .
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Groups with trivial Bohr topology

The Bohr topology on G will be called trivial if the only Bohr open
subsets of G are ∅ and G .
The Bohr topology on a group G is trivial if and only if each
homomorphism h : G → K to a compact Hausdorff topological
group K is constant.
Examples of groups with trivial Bohr topology are:

the group SX of all permutations of an infinite set X ;

the group AX of all even finitely supported permutations of an
infinite set X .

The group AX is locally finite and hence amenable.
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Characterizing amenable groups with trivial Bohr topology

Theorem

If an amenable group G has trivial Bohr topology, then for any
right-Solecki positive sets A,B ⊂ G we get

1 AB is right-Solecki one and G \ AA−1 is right-Solecki null;

2 G = B−1AA−1 = AA−1A = ABB−1A−1.

Theorem

An amenable group G has trivial Bohr topology iff for every
partition G = A1 ∪ · · · ∪ An there is a cell Ai with AiA

−1
i Ai = G .

A group G is odd if every element of G has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition G = A1 ∪ A2 there is a cell
Ai of the partition such that AiA

−1
i = G .
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Some corollaries for permutation groups

Corollary

If a subset A of an infinite alternating group G = AX is
right-Solecki positive, then AA−1A = G .

Problem

Is AA−1A = G for each (inner-invariant) right-Solecki positive set
A in an infinite permutation group G = SX ?

Applying some results of Bergman (2006) it is possible to prove:

Theorem (B., 2013)

For any inner-invariant Solecki positive subset A of an infinite
permutation group G = SX we get (AA−1)18 = G .
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Two Open Problems

Problem

Is there a group G such that σ(A) ∈ {0, 1} for any subset A ⊂ G ?

Problem

Let H be a meager analytic subgroup of a compact topological
group G . Is H Solecki null? (Yes, if G is abelian).
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