Solecki submeasures and densities on groups

Taras Banakh

Kielce-Lviv

Hejnice, 2013

Taras Banakh Solecki submeasures and densities on groups

A function $\mu: \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if $\mu(A) \leq \mu(B)$ for any subsets $A \subset B$ of X;
- subadditive if $\mu(A \cup B) \le \mu(A) + \mu(B)$ for any subsets $A, B \subset X$;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets
 A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a *submeasure* if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if µ(A∪B) ≤ µ(A) + µ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a *submeasure* if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if µ(A∪B) ≤ µ(A) + µ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a submeasure if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if μ(A ∪ B) ≤ μ(A) + μ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a submeasure if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

So, all our measures are, in fact, finitely additive probability measures.

♬▶ ◀ 늘 ▶ ◀

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if μ(A ∪ B) ≤ μ(A) + μ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a submeasure if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

So, all our measures are, in fact, finitely additive probability measures.

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if μ(A ∪ B) ≤ μ(A) + μ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a submeasure if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

A function $\mu : \mathcal{P}(X) \to [0,1]$ on a power-set of a set X is called:

- monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B of X;
- subadditive if μ(A∪B) ≤ μ(A) + μ(B) for any subsets A, B ⊂ X;
- additive if μ(A ∪ B) = μ(A) + μ(B) for any disjoint subsets A, B ⊂ X;
- a *density* on X if μ is monotone, $\mu(\emptyset) = 0$ and $\mu(X) = 1$;
- a submeasure if μ is a subadditive density on X;
- a *measure* if μ is an additive density on X.

A density $\mu: \mathcal{P}(G) \rightarrow [0,1]$ on a group G is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- *invariant* if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;
- auto invariant if μ(h(A)) = μ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

A density $\mu:\mathcal{P}(\mathcal{G})
ightarrow [0,1]$ on a group \mathcal{G} is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- invariant if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;
- auto invariant if μ(h(A)) = μ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

A density $\mu:\mathcal{P}(\mathcal{G})
ightarrow [0,1]$ on a group \mathcal{G} is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- *invariant* if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;
- auto invariant if μ(h(A)) = μ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

A density $\mu:\mathcal{P}(\mathcal{G})
ightarrow [0,1]$ on a group \mathcal{G} is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- *invariant* if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;
- auto invariant if µ(h(A)) = µ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

A density $\mu:\mathcal{P}(\mathcal{G})
ightarrow [0,1]$ on a group \mathcal{G} is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- invariant if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;

auto invariant if µ(h(A)) = µ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

A density $\mu: \mathcal{P}(G) \rightarrow [0,1]$ on a group G is called

- *left invariant* if $\mu(xA) = \mu(A)$ for all $x \in G$ and $A \subset G$;
- right invariant if $\mu(Ay) = \mu(A)$ for all $y \in G$ and $A \subset G$;
- *invariant* if $\mu(xAy) = \mu(A)$ for all $x, y \in G$ and $A \subset X$;
- inversely invariant if $\mu(A^{-1}) = \mu(A)$ for all $A \subset X$;
- auto invariant if μ(h(A)) = μ(A) for any automorphism
 h : G → G and any subset A ⊂ X.

Theorem (Haar, 1933)

Each compact topological group possesses a unique invariant probability σ -additive regular Borel measure $\lambda : \mathcal{B}(G) \to [0, 1]$ defined on the σ -algebra of Borel subsets of G.

The uniqueness of λ implies that it is inversely and autoinvariant.

Problem

What about discrete groups? Do they have any canonical (sub)measures?

Theorem (Haar, 1933)

Each compact topological group possesses a unique invariant probability σ -additive regular Borel measure $\lambda : \mathcal{B}(G) \rightarrow [0, 1]$ defined on the σ -algebra of Borel subsets of G. The uniqueness of λ implies that it is inversely and autoinvariant.

Problem

What about discrete groups? Do they have any canonical (sub)measures?

Theorem (Haar, 1933)

Each compact topological group possesses a unique invariant probability σ -additive regular Borel measure $\lambda : \mathcal{B}(G) \rightarrow [0, 1]$ defined on the σ -algebra of Borel subsets of G. The uniqueness of λ implies that it is inversely and autoinvariant.

Problem

What about discrete groups? Do they have any canonical (sub)measures?

There exists an invariant measure on the group of integers \mathbb{Z} .

Definition (von Neuman, 1929; Day, 1949)

A group G is called **amenable** if it admits a left-invariant measure $\mu : \mathcal{P}(G) \rightarrow [0, 1]$.

- Each abelian group is amenable;
- A non-commutative free group is not amenable.

There exists an invariant measure on the group of integers \mathbb{Z} .

Definition (von Neuman, 1929; Day, 1949)

A group G is called amenable if it admits a left-invariant measure $\mu : \mathcal{P}(G) \rightarrow [0, 1].$

- Each abelian group is amenable;
- A non-commutative free group is not amenable.

There exists an invariant measure on the group of integers \mathbb{Z} .

Definition (von Neuman, 1929; Day, 1949)

A group G is called amenable if it admits a left-invariant measure $\mu : \mathcal{P}(G) \rightarrow [0, 1].$

- Each abelian group is amenable;
- A non-commutative free group is not amenable.

There exists an invariant measure on the group of integers \mathbb{Z} .

Definition (von Neuman, 1929; Day, 1949)

A group G is called amenable if it admits a left-invariant measure $\mu : \mathcal{P}(G) \rightarrow [0, 1].$

- Each abelian group is amenable;
- A non-commutative free group is not amenable.

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$

Problem

Are there any canonical **non-trivial** and **useful** invariant submeasure on a group?

Yes!! Ü

Invariant submeasures?

Conclusion: There are groups admitting no invariant measure :(

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$

But this is trivial :(

Problem

Are there any canonical **non-trivial** and **useful** invariant submeasure on a group?

Yes!! Ü

Invariant submeasures?

Conclusion: There are groups admitting no invariant measure :(

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$

But this is trivial :(

Problem

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$

But this is trivial :(

Problem

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$
 But this is trivial :(

Problem

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$
 But this is trivial :(

Problem

Problem

What about invariant submeasures? Do they always exist on any group?

Yes!
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{otherwise} \end{cases}$$
 But this is trivial :(

Problem

Each group G possesses a canonical invariant submeasure $\sigma:\mathcal{P}(G) \to [0,1]$ defined by

$$\sigma(A) = \inf_{F \in [G]^{<\omega}} \max_{x,y \in G} \frac{|F \cap xAy|}{|F|}.$$

This submeasure is inversely and auto invariant.

The submeasure σ was thoroughly studied by Solecki and because of that we decided to name it the Solecki submeasure.

Example

The subset $A = 2\mathbb{Z}$ in \mathbb{Z} has Solecki submeasure $\sigma(A) = \frac{1}{2}$.

Each group G possesses a canonical invariant submeasure $\sigma: \mathcal{P}(G) \to [0,1]$ defined by

$$\sigma(A) = \inf_{F \in [G]^{<\omega}} \max_{x,y \in G} \frac{|F \cap xAy|}{|F|}.$$

This submeasure is inversely and auto invariant.

The submeasure σ was thoroughly studied by Solecki and because of that we decided to name it the Solecki submeasure.

Example

The subset $A = 2\mathbb{Z}$ in \mathbb{Z} has Solecki submeasure $\sigma(A) = \frac{1}{2}$.

Each group G possesses a canonical invariant submeasure $\sigma:\mathcal{P}(G) \to [0,1]$ defined by

$$\sigma(A) = \inf_{F \in [G]^{<\omega}} \max_{x,y \in G} \frac{|F \cap xAy|}{|F|}.$$

This submeasure is inversely and auto invariant.

The submeasure σ was thoroughly studied by Solecki and because of that we decided to name it the Solecki submeasure.

Example

The subset $A = 2\mathbb{Z}$ in \mathbb{Z} has Solecki submeasure $\sigma(A) = \frac{1}{2}$.

Each group G possesses a canonical invariant submeasure $\sigma: \mathcal{P}(G) \to [0,1]$ defined by

$$\sigma(A) = \inf_{F \in [G]^{<\omega}} \max_{x,y \in G} \frac{|F \cap xAy|}{|F|}.$$

This submeasure is inversely and auto invariant.

The submeasure σ was thoroughly studied by Solecki and because of that we decided to name it the Solecki submeasure.

Example

The subset
$$A = 2\mathbb{Z}$$
 in \mathbb{Z} has Solecki submeasure $\sigma(A) = \frac{1}{2}$.

An alternative definition of the Solecki submeasure

The Solecki submeasure can be alternatively defined using finitely supported measures on G instead of finite subsets of G.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x, y \in G} \mu(xAy).$$

The Solecki submeasure can be alternatively defined using finitely supported measures on G instead of finite subsets of G.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x, y \in G} \mu(xAy).$$

The Solecki submeasure can be alternatively defined using finitely supported measures on *G* instead of finite subsets of *G*.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x, y \in G} \mu(xAy).$$

The Solecki submeasure can be alternatively defined using finitely supported measures on G instead of finite subsets of G.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x, y \in G} \mu(xAy).$$

The Solecki submeasure can be alternatively defined using finitely supported measures on G instead of finite subsets of G.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x,y \in G} \mu(xAy).$$

This theorem implies that σ is subadditive.

The Solecki submeasure can be alternatively defined using finitely supported measures on G instead of finite subsets of G.

A measure μ on a set X is finitely supported if $\mu(F) = 1$ for some finite subset F. In this case it can be written as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. By P(X) we denote the set of all measures on a set X and by $P_{\omega}(X)$ its subset consisting of finitely supported measures on X.

Theorem (Solecki, 2005)

Any subset A of a group G has Solecki submeasure

$$\sigma(A) = \inf_{\mu \in P_{\omega}(G)} \sup_{x, y \in G} \mu(xAy).$$

This theorem implies that σ is subadditive.

Given any subsets $A, B \subset G$ we need to prove that

$\sigma(A\cup B)\leq \sigma(A)+\sigma(B)+2\varepsilon$

for every $\varepsilon > 0$. Using the equivalent definition of the Solecki submesures, find two finitely supported probability measures $\mu_A, \mu_B \in P_{\omega}(G)$ such that

$$\max_{x,y\in G} \mu_A(xAy) < \sigma(A) + \varepsilon \quad \text{and} \quad \max_{x,y\in G} \mu_B(xBy) < \sigma(B) + \varepsilon.$$

$$\mu = \mu_A * \mu_B = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}.$$

Given any subsets $A, B \subset G$ we need to prove that

$$\sigma(A \cup B) \leq \sigma(A) + \sigma(B) + 2\varepsilon$$

for every $\varepsilon > 0$. Using the equivalent definition of the Solecki submesures, find two finitely supported probability measures $\mu_A, \mu_B \in P_{\omega}(G)$ such that

$$\max_{x,y\in G} \mu_A(xAy) < \sigma(A) + \varepsilon \quad \text{and} \quad \max_{x,y\in G} \mu_B(xBy) < \sigma(B) + \varepsilon.$$

$$\mu = \mu_A * \mu_B = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}.$$

Given any subsets $A, B \subset G$ we need to prove that

$$\sigma(A \cup B) \leq \sigma(A) + \sigma(B) + 2\varepsilon$$

for every $\varepsilon > 0$. Using the equivalent definition of the Solecki submesures, find two finitely supported probability measures $\mu_A, \mu_B \in P_{\omega}(G)$ such that

$$\max_{x,y\in \mathcal{G}} \mu_A(xAy) < \sigma(A) + \varepsilon \quad \text{and} \quad \max_{x,y\in \mathcal{G}} \mu_B(xBy) < \sigma(B) + \varepsilon.$$

$$\mu = \mu_A * \mu_B = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}.$$

Given any subsets $A, B \subset G$ we need to prove that

$$\sigma(A \cup B) \leq \sigma(A) + \sigma(B) + 2\varepsilon$$

for every $\varepsilon > 0$. Using the equivalent definition of the Solecki submesures, find two finitely supported probability measures $\mu_A, \mu_B \in P_{\omega}(G)$ such that

$$\max_{x,y\in \mathcal{G}} \mu_{\mathcal{A}}(xAy) < \sigma(\mathcal{A}) + \varepsilon \quad \text{and} \quad \max_{x,y\in \mathcal{G}} \mu_{\mathcal{B}}(xBy) < \sigma(\mathcal{B}) + \varepsilon.$$

$$\mu = \mu_{A} * \mu_{B} = \sum_{i,j} \alpha_{i} \beta_{j} \delta_{\mathbf{a}_{i} \mathbf{b}_{j}}.$$

$$\mu(xAy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xAy) = \sum_j \beta_j \sum_i \alpha_i \delta_{a_i}(xAyb_j^{-1}) =$$
$$= \sum_j \beta_j \mu_A(xAyb_j) < \sum_j \beta_j(\sigma(A) + \varepsilon) = \sigma(A) + \varepsilon$$

and

$$\mu(xBy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xBy) = \sum_i \alpha_i \sum_j \beta_j \delta_{b_j}(a_i^{-1}xBy) =$$
$$= \sum_i \alpha_i \mu_B(a_i^{-1}xBy) < \sum_i \alpha_i(\sigma(B) + \varepsilon) = \sigma(B) + \varepsilon.$$

Consequently,

 $\mu(x(A \cup B)y) \le \mu(xAy) + \mu(xBy) < \sigma(A) + \sigma(B) + 2\varepsilon$

$$\sigma(A \cup B) \leq \sup_{x,y \in G} \mu(x(A \cup B)y)) \leq \sigma(A) + \sigma(B) + 2\varepsilon.$$

< ∃ →

э

$$\mu(xAy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xAy) = \sum_j \beta_j \sum_i \alpha_i \delta_{a_i}(xAyb_j^{-1}) =$$
$$= \sum_j \beta_j \mu_A(xAyb_j) < \sum_j \beta_j(\sigma(A) + \varepsilon) = \sigma(A) + \varepsilon$$

and

$$\mu(\mathsf{x}B\mathsf{y}) = \sum_{i,j} \alpha_i \beta_j \delta_{\mathsf{a}_i \mathsf{b}_j}(\mathsf{x}B\mathsf{y}) = \sum_i \alpha_i \sum_j \beta_j \delta_{\mathsf{b}_j}(\mathsf{a}_i^{-1}\mathsf{x}B\mathsf{y}) =$$
$$= \sum_i \alpha_i \mu_B(\mathsf{a}_i^{-1}\mathsf{x}B\mathsf{y}) < \sum_i \alpha_i(\sigma(B) + \varepsilon) = \sigma(B) + \varepsilon.$$

Consequently,

 $\mu(x(A \cup B)y) \le \mu(xAy) + \mu(xBy) < \sigma(A) + \sigma(B) + 2\varepsilon$

$$\sigma(A \cup B) \leq \sup_{x,y \in G} \mu(x(A \cup B)y)) \leq \sigma(A) + \sigma(B) + 2\varepsilon.$$

< ∃ →

э

$$\mu(xAy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xAy) = \sum_j \beta_j \sum_i \alpha_i \delta_{a_i}(xAyb_j^{-1}) =$$
$$= \sum_j \beta_j \mu_A(xAyb_j) < \sum_j \beta_j(\sigma(A) + \varepsilon) = \sigma(A) + \varepsilon$$

and

and

$$\mu(xBy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xBy) = \sum_i \alpha_i \sum_j \beta_j \delta_{b_j}(a_i^{-1} xBy) =$$
$$= \sum_i \alpha_i \mu_B(a_i^{-1} xBy) < \sum_i \alpha_i(\sigma(B) + \varepsilon) = \sigma(B) + \varepsilon.$$

Consequently,

 $\mu(x(A \cup B)y) \leq \mu(xAy) + \mu(xBy) < \sigma(A) + \sigma(B) + 2\varepsilon$

$$\sigma(A \cup B) \leq \sup_{x,y \in G} \mu(x(A \cup B)y)) \leq \sigma(A) + \sigma(B) + 2\varepsilon.$$

э

$$\mu(xAy) = \sum_{i,j} \alpha_i \beta_j \delta_{a_i b_j}(xAy) = \sum_j \beta_j \sum_i \alpha_i \delta_{a_i}(xAyb_j^{-1}) =$$
$$= \sum_j \beta_j \mu_A(xAyb_j) < \sum_j \beta_j(\sigma(A) + \varepsilon) = \sigma(A) + \varepsilon$$

and

and

$$\mu(\mathsf{x}B\mathsf{y}) = \sum_{i,j} \alpha_i \beta_j \delta_{\mathsf{a}_i \mathsf{b}_j}(\mathsf{x}B\mathsf{y}) = \sum_i \alpha_i \sum_j \beta_j \delta_{\mathsf{b}_j}(\mathsf{a}_i^{-1}\mathsf{x}B\mathsf{y}) =$$
$$= \sum_i \alpha_i \mu_B(\mathsf{a}_i^{-1}\mathsf{x}B\mathsf{y}) < \sum_i \alpha_i(\sigma(B) + \varepsilon) = \sigma(B) + \varepsilon.$$

Consequently,

$$\mu(x(A \cup B)y) \le \mu(xAy) + \mu(xBy) < \sigma(A) + \sigma(B) + 2\varepsilon$$

$$\sigma(A\cup B)\leq \sup_{x,y\in G}\mu(x(A\cup B)y))\leq \sigma(A)+\sigma(B)+2\varepsilon.$$

æ

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

It is clear that $\sigma_L \leq \sigma^L \leq \sigma \geq \sigma^R \geq \sigma_R.$

The densities $\sigma_L, \sigma^L, \sigma_R, \sigma^R$ are (auto) invariant but not inversely invariant in general. However

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

The Solecki submeasure has natural left and right modifications called the left and right Solecki densities:

$$\sigma^{L}(A) = \inf_{F \in [G]^{<\omega}} \max_{x \in G} \frac{|F \cap xA|}{|F|} \quad \sigma^{R}(A) = \inf_{F \in [G]^{<\omega}} \max_{y \in G} \frac{|F \cap Ay|}{|F|}$$
$$\sigma_{L}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{x \in X} \mu(xA) \quad \sigma_{R}(A) = \inf_{\mu \in P_{\omega}(G)} \max_{y \in X} \mu(Ay)$$

$$\sigma_L(A^{-1}) = \sigma_R(A)$$
 and $\sigma^L(A^{-1}) = \sigma^R(A)$.

abelian group \Rightarrow FC-group \Rightarrow amenable group

Theorem (Solecki, 2005)

- A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R$.
- (a) If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.

• If $G = F_2$ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

 $abelian \ group \Rightarrow \mathsf{FC}\text{-}\mathsf{group} \Rightarrow \mathsf{amenable} \ group$

Theorem (Solecki, 2005)

- A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R.$
- (a) If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.

• If $G = F_2$ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

abelian group \Rightarrow FC-group \Rightarrow amenable group

Theorem (Solecki, 2005)

• A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R.$

2) If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.

③ If $G = F_2$ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

abelian group \Rightarrow FC-group \Rightarrow amenable group

Theorem (Solecki, 2005)

- A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R.$
- **2** If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.
- (a) If $G = F_2$ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

abelian group \Rightarrow FC-group \Rightarrow amenable group

Theorem (Solecki, 2005)

- A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R.$
- **2** If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.
- **③** If *G* = *F*₂ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

abelian group \Rightarrow FC-group \Rightarrow amenable group

Theorem (Solecki, 2005)

- A group G is an FC-group if and only if $\sigma_L = \sigma^L = \sigma = \sigma^R = \sigma_R.$
- **2** If G is an amenable group, then $\sigma_L = \sigma^L$ and $\sigma_R = \sigma^R$ are subadditive.
- If $G = F_2$ is a free group, then $\sigma_L \neq \sigma^L$ and $\sigma_R \neq \sigma^R$ and the densities $\sigma_L, \sigma^L, \sigma^R, \sigma_R$ are not subadditive.

In the free group $F_2 = \langle a, b \rangle$ consider the set A of irreducible words that start with a or a^{-1} .

The set A has right Solecki density $\sigma^R(A) = 0$ since for every set $F = \{b, b^2, \dots, b^n\}$, $n \in \mathbb{N}$, we get $\sup_{y \in G} |F \cap Ay| \le 1$ which implies $\sigma^R(A) \le \sup_{y \in G} \frac{|F \cap Ay|}{|F|} \le \frac{1}{n}$. By analogy we can prove that $\sigma^R(A) = 0$. Then $\sigma^L(A^{-1}) = \sigma^R(A) = 0$ and $\sigma^L(B^{-1}) = \sigma^R(B) = 0$ and $F_2 = (A \cap A^{-1}) \cup (A \cap B^{-1}) \cup (B \cap A^{-1}) \cup (B \cap B^{-1})$

In the free group $F_2 = \langle a, b \rangle$ consider the set A of irreducible words that start with a or a^{-1} . The set A has right Solecki density $\sigma^R(A) = 0$ since for every set $F = \{b, b^2, \dots, b^n\}$, $n \in \mathbb{N}$, we get $\sup_{y \in G} |F \cap Ay| \leq 1$ which implies $\sigma^R(A) \leq \sup_{y \in G} \frac{|F \cap Ay|}{|F|} \leq \frac{1}{n}$. By analogy we can prove that $\sigma^R(A) = 0$. Then $\sigma^L(A^{-1}) = \sigma^R(A) = 0$ and $\sigma^L(B^{-1}) = \sigma^R(B) = 0$ and $F_2 = (A \cap A^{-1}) \cup (A \cap B^{-1}) \cup (B \cap A^{-1}) \cup (B \cap B^{-1})$

In the free group $F_2 = \langle a, b \rangle$ consider the set A of irreducible words that start with a or a^{-1} . The set A has right Solecki density $\sigma^R(A) = 0$ since for every set $F = \{b, b^2, \dots, b^n\}$, $n \in \mathbb{N}$, we get $\sup_{y \in G} |F \cap Ay| \leq 1$ which implies $\sigma^R(A) \leq \sup_{y \in G} \frac{|F \cap Ay|}{|F|} \leq \frac{1}{n}$. By analogy we can prove that $\sigma^R(A) = 0$. Then $\sigma^L(A^{-1}) = \sigma^R(A) = 0$ and $\sigma^L(B^{-1}) = \sigma^R(B) = 0$ and $F_2 = (A \cap A^{-1}) \cup (A \cap B^{-1}) \cup (B \cap A^{-1}) \cup (B \cap B^{-1})$

In the free group $F_2 = \langle a, b \rangle$ consider the set A of irreducible words that start with a or a^{-1} . The set A has right Solecki density $\sigma^R(A) = 0$ since for every set $F = \{b, b^2, \dots, b^n\}, n \in \mathbb{N}$, we get $\sup_{y \in G} |F \cap Ay| \le 1$ which implies $\sigma^R(A) \le \sup_{y \in G} \frac{|F \cap Ay|}{|F|} \le \frac{1}{n}$. By analogy we can prove that $\sigma^R(A) = 0$. Then $\sigma^L(A^{-1}) = \sigma^R(A) = 0$ and $\sigma^L(B^{-1}) = \sigma^R(B) = 0$ and $F_2 = (A \cap A^{-1}) \cup (A \cap B^{-1}) \cup (B \cap A^{-1}) \cup (B \cap B^{-1})$

In the free group $F_2 = \langle a, b \rangle$ consider the set A of irreducible words that start with a or a^{-1} . The set A has right Solecki density $\sigma^R(A) = 0$ since for every set $F = \{b, b^2, \dots, b^n\}, n \in \mathbb{N}$, we get $\sup_{y \in G} |F \cap Ay| \leq 1$ which implies $\sigma^R(A) \leq \sup_{y \in G} \frac{|F \cap Ay|}{|F|} \leq \frac{1}{n}$. By analogy we can prove that $\sigma^R(A) = 0$. Then $\sigma^L(A^{-1}) = \sigma^R(A) = 0$ and $\sigma^L(B^{-1}) = \sigma^R(B) = 0$ and $F_2 = (A \cap A^{-1}) \cup (A \cap B^{-1}) \cup (B \cap A^{-1}) \cup (B \cap B^{-1})$

A minimax characterization of Solecki densities

The Kelley intersection number $I(\mathcal{F})$ of a family \mathcal{F} of subsets of a set X is defined as

$$I(\mathcal{F}) = \inf_{F_1,\ldots,F_n \in \mathcal{F}} \sup_{x \in X} \frac{1}{n} \sum_{i=1}^n \chi_{F_i}(x).$$

Theorem (B., 2012)

For a subset A of a group G we get

$$\inf_{\mu\in P_{\omega}(G)}\sup_{y\in G}\mu(Ay)=\sigma_R(A)=I(\{xA\}_{x\in G})=\sup_{\mu\in P(G)}\inf_{x\in G}\mu(xA).$$

Here P(G) stands for the set of all (finitely additive probability) measures on X.

A minimax characterization of Solecki densities

The Kelley intersection number $I(\mathcal{F})$ of a family \mathcal{F} of subsets of a set X is defined as

$$I(\mathcal{F}) = \inf_{F_1,\ldots,F_n \in \mathcal{F}} \sup_{x \in X} \frac{1}{n} \sum_{i=1}^n \chi_{F_i}(x).$$

Theorem (B., 2012)

For a subset A of a group G we get

$$\inf_{\mu\in P_{\omega}(G)}\sup_{y\in G}\mu(Ay)=\sigma_{R}(A)=I(\{xA\}_{x\in G})=\sup_{\mu\in P(G)}\inf_{x\in G}\mu(xA).$$

Here P(G) stands for the set of all (finitely additive probability) measures on X.

The upper Banach density $d^*(A)$ of a subset A of an amenable group G is defined as

$$d^*(A) = \sup_{\mu \in P_l(G)} \mu(A)$$

where $P_{l}(G)$ denotes the set of all left-invariant measures on X.

It is clear that the upper Banach density $d^* : \mathcal{P}(G) \to [0, 1]$ is a left-invariant submeasure on each amenable group G. The Minimax Theorem describing the right Solecki density implies

Corollary (B., 2013)

For any amenable group G we get $\sigma_R = \sigma^R = d^*$. Consequently the right Solecki density on G is subadditive. The upper Banach density $d^*(A)$ of a subset A of an amenable group G is defined as

$$d^*(A) = \sup_{\mu \in P_l(G)} \mu(A)$$

where $P_l(G)$ denotes the set of all left-invariant measures on X.

It is clear that the upper Banach density $d^* : \mathcal{P}(G) \to [0,1]$ is a left-invariant submeasure on each amenable group G.

The Minimax Theorem describing the right Solecki density implies:

Corollary (B., 2013)

For any amenable group G we get $\sigma_R = \sigma^R = d^*$. Consequently the right Solecki density on G is subadditive.

直 ト イヨ ト イヨ ト

The upper Banach density $d^*(A)$ of a subset A of an amenable group G is defined as

$$d^*(A) = \sup_{\mu \in P_l(G)} \mu(A)$$

where $P_l(G)$ denotes the set of all left-invariant measures on X.

It is clear that the upper Banach density $d^* : \mathcal{P}(G) \to [0, 1]$ is a left-invariant submeasure on each amenable group G. The Minimax Theorem describing the right Solecki density implies:

Corollary (B., 2013)

For any amenable group G we get $\sigma_R = \sigma^R = d^*$. Consequently the right Solecki density on G is subadditive.

Solecki-amenable groups

Definition

A group G is Solecki-amenable if its Solecki density σ_R is subadditive.

Amenable group \Rightarrow Solecki-amenable

Problem (Solecki, 2005)

Is each Solecki-amenable group amenable?

Theorem (B., 2012)

For a group G the following conditions are equivalent:

- G is amenable;
- 2) $G \times \mathbb{Z}$ is Solecki-amenable;
- If or every n ∈ N there is a finite group F of cardinality |F| ≥ n such that the product G × F is a Solecki-amenable group;
- \odot $\sigma_R(f) + \sigma_R(1-f) \geq 1$ for any fuzzy set f: G
 ightarrow [0,1].

Solecki-amenable groups

Definition

A group G is Solecki-amenable if its Solecki density σ_R is subadditive.

Amenable group \Rightarrow Solecki-amenable

Problem (Solecki, 2005)

Is each Solecki-amenable group amenable?

Theorem (B., 2012)

For a group G the following conditions are equivalent:

- G is amenable;
- 2) $G \times \mathbb{Z}$ is Solecki-amenable;
- If or every n ∈ N there is a finite group F of cardinality |F| ≥ n such that the product G × F is a Solecki-amenable group;
- \odot $\sigma_R(f) + \sigma_R(1-f) \geq 1$ for any fuzzy set f: G
 ightarrow [0,1].

Solecki-amenable groups

Definition

A group G is Solecki-amenable if its Solecki density σ_R is subadditive.

Amenable group \Rightarrow Solecki-amenable

Problem (Solecki, 2005)

Is each Solecki-amenable group amenable?

Theorem (B., 2012)

For a group G the following conditions are equivalent:

- G is amenable;
- 2) $G \times \mathbb{Z}$ is Solecki-amenable;
- If or every n ∈ N there is a finite group F of cardinality |F| ≥ n such that the product G × F is a Solecki-amenable group;
- $\sigma_R(f) + \sigma_R(1-f) \geq 1$ for any fuzzy set f: G o [0,1].

Solecki-amenable groups

Definition

A group G is Solecki-amenable if its Solecki density σ_R is subadditive.

Amenable group \Rightarrow Solecki-amenable

Problem (Solecki, 2005)

Is each Solecki-amenable group amenable?

Theorem (B., 2012)

For a group G the following conditions are equivalent:

- G is amenable;
- **2** $G \times \mathbb{Z}$ is Solecki-amenable;
- for every n ∈ N there is a finite group F of cardinality |F| ≥ n such that the product G × F is a Solecki-amenable group;
- $\sigma_R(f) + \sigma_R(1-f) \ge 1$ for any fuzzy set $f: G \to [0,1]$.

Solecki one, null, and positive sets

A subset A of a group G is called

- Solecki null if $\sigma(A) = 0$;
- Solecki positive if $\sigma(A) > 0$;
- Solecki one if $\sigma(A) = 1$.

Solecki one sets can be characterized as follows:

Proposition

Solecki one, null, and positive sets

A subset A of a group G is called

- Solecki null if $\sigma(A) = 0$;
- Solecki positive if σ(A) > 0;
- Solecki one if $\sigma(A) = 1$.

Solecki one sets can be characterized as follows:

Proposition

Solecki one, null, and positive sets

A subset A of a group G is called

- Solecki null if $\sigma(A) = 0$;
- Solecki positive if $\sigma(A) > 0$;
- Solecki one if $\sigma(A) = 1$.

Solecki one sets can be characterized as follows:

Proposition

A subset A of a group G is called

- Solecki null if $\sigma(A) = 0$;
- Solecki positive if σ(A) > 0;
- Solecki one if $\sigma(A) = 1$.

Solecki one sets can be characterized as follows:

Proposition

The subadditivity of the Solecki submeasure σ implies that the Solecki null sets of a group G form an invariant ideal S_G on G.

Problem

Given a group G, study the properties of the ideal S_G . In particular, calculate its cardinal characteristics

$$\begin{aligned} \operatorname{add}(\mathcal{S}_{G}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_{G}, \ \cup \mathcal{A} \notin \mathcal{S}_{G}\},\\ \operatorname{cov}(\mathcal{S}_{G}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_{G}, \ \cup \mathcal{A} = \cup \mathcal{S}_{G}\},\\ \operatorname{non}(\mathcal{S}_{G}) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{G}, \ \mathcal{A} \notin \mathcal{S}_{G}\},\\ \operatorname{cof}(\mathcal{S}_{G}) &= \min\{|\mathcal{C}| : \mathcal{C} \subset \mathcal{S}_{G}, \ \forall \mathcal{A} \in \mathcal{S}_{G} \ \exists \mathcal{C} \in \mathcal{C} \ \text{with} \ \mathcal{A} \subset \mathcal{C}\}. \end{aligned}$$

The subadditivity of the Solecki submeasure σ implies that the Solecki null sets of a group G form an invariant ideal S_G on G.

Problem

Given a group G, study the properties of the ideal S_G . In particular, calculate its cardinal characteristics

 $add(\mathcal{S}_{G}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_{G}, \ \cup \mathcal{A} \notin \mathcal{S}_{G}\},\\cov(\mathcal{S}_{G}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_{G}, \ \cup \mathcal{A} = \cup \mathcal{S}_{G}\},\\non(\mathcal{S}_{G}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{G}, \ \mathcal{A} \notin \mathcal{S}_{G}\},\\cof(\mathcal{S}_{G}) = \min\{|\mathcal{C}| : \mathcal{C} \subset \mathcal{S}_{G}, \ \forall \mathcal{A} \in \mathcal{S}_{G} \ \exists \mathcal{C} \in \mathcal{C} \ with \ \mathcal{A} \subset \mathcal{C}\}$

The subadditivity of the Solecki submeasure σ implies that the Solecki null sets of a group G form an invariant ideal S_G on G.

Problem

Given a group G, study the properties of the ideal S_G . In particular, calculate its cardinal characteristics

$$\begin{aligned} \operatorname{add}(\mathcal{S}_G) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_G, \ \cup \mathcal{A} \notin \mathcal{S}_G\},\\ \operatorname{cov}(\mathcal{S}_G) &= \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{S}_G, \ \cup \mathcal{A} = \cup \mathcal{S}_G\},\\ \operatorname{non}(\mathcal{S}_G) &= \min\{|\mathcal{A}| : \mathcal{A} \subset G, \ \mathcal{A} \notin \mathcal{S}_G\},\\ \operatorname{cof}(\mathcal{S}_G) &= \min\{|\mathcal{C}| : \mathcal{C} \subset \mathcal{S}_G, \ \forall \mathcal{A} \in \mathcal{S}_G \ \exists \mathcal{C} \in \mathcal{C} \ \text{with} \ \mathcal{A} \subset \mathcal{C}\}. \end{aligned}$$

For each infinite group G we get

$$\operatorname{non}(\mathcal{S}_{G}) \longrightarrow \operatorname{cof}(\mathcal{S}_{G}) \longrightarrow 2^{|G|}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\omega \longrightarrow \operatorname{add}(\mathcal{S}_{G}) \longrightarrow \operatorname{cov}(\mathcal{S}_{G}) \longrightarrow |G|$$

Example (Not exciting)

For any infinite countable group G $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G) = \operatorname{cov}(S_G) < \operatorname{cof}(S_G).$ If G is abelian, then $\omega = \operatorname{add}(S_G) = \operatorname{cov}(S_G)$ and $\operatorname{non}(S_G) = |G|.$

Example (Exciting)

For any infinite cardinal κ there is an amenable group G such that $|G| = \kappa$ and $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G)$.

э

For each infinite group G we get

$$\operatorname{non}(\mathcal{S}_{G}) \longrightarrow \operatorname{cof}(\mathcal{S}_{G}) \longrightarrow 2^{|G|}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\omega \longrightarrow \operatorname{add}(\mathcal{S}_{G}) \longrightarrow \operatorname{cov}(\mathcal{S}_{G}) \longrightarrow |G|$$

Example (Not exciting)

For any infinite countable group G $\omega = \operatorname{add}(\mathcal{S}_G) = \operatorname{non}(\mathcal{S}_G) = \operatorname{cov}(\mathcal{S}_G) < \operatorname{cof}(\mathcal{S}_G).$

Example (Exciting)

For any infinite cardinal κ there is an amenable group G such that $|G| = \kappa$ and $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G)$.

э

For each infinite group G we get

$$\operatorname{non}(\mathcal{S}_{G}) \longrightarrow \operatorname{cof}(\mathcal{S}_{G}) \longrightarrow 2^{|G|}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\omega \longrightarrow \operatorname{add}(\mathcal{S}_{G}) \longrightarrow \operatorname{cov}(\mathcal{S}_{G}) \longrightarrow |G|$$

Example (Not exciting)

For any infinite countable group G $\omega = \operatorname{add}(\mathcal{S}_G) = \operatorname{non}(\mathcal{S}_G) = \operatorname{cov}(\mathcal{S}_G) < \operatorname{cof}(\mathcal{S}_G).$ If G is abelian, then $\omega = \operatorname{add}(\mathcal{S}_G) = \operatorname{cov}(\mathcal{S}_G)$ and $\operatorname{non}(\mathcal{S}_G) = |G|.$

Example (Exciting)

For any infinite cardinal κ there is an amenable group G such that $|G| = \kappa$ and $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G)$.

э

For each infinite group G we get

$$\operatorname{non}(\mathcal{S}_{G}) \longrightarrow \operatorname{cof}(\mathcal{S}_{G}) \longrightarrow 2^{|G|}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\omega \longrightarrow \operatorname{add}(\mathcal{S}_{G}) \longrightarrow \operatorname{cov}(\mathcal{S}_{G}) \longrightarrow |G|$$

Example (Not exciting)

For any infinite countable group G $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G) = \operatorname{cov}(S_G) < \operatorname{cof}(S_G).$ If G is abelian, then $\omega = \operatorname{add}(S_G) = \operatorname{cov}(S_G)$ and $\operatorname{non}(S_G) = |G|.$

Example (Exciting)

For any infinite cardinal κ there is an amenable group G such that $|G| = \kappa$ and $\omega = \operatorname{add}(S_G) = \operatorname{non}(S_G)$.

In the group $G = FS_{\kappa}$ of finitely supported permutations of the cardinal κ consider the countable subgroup $H = FS_{\omega}$ consisting of all permutations $f : \kappa \to \kappa$ with finite support

$$\operatorname{supp}(f) = \{x \in \kappa : f(x) \neq x\} \subset \omega.$$

It can be shown that $\sigma(H) = 1$. So, $H \notin S_G$ and

$$\omega \leq \operatorname{add}(\mathcal{S}_{\mathcal{G}}) \leq \operatorname{non}(\mathcal{S}_{\mathcal{G}}) \leq |H| = \omega.$$

Problem

In the group $G = FS_{\kappa}$ of finitely supported permutations of the cardinal κ consider the countable subgroup $H = FS_{\omega}$ consisting of all permutations $f : \kappa \to \kappa$ with finite support

$$\operatorname{supp}(f) = \{x \in \kappa : f(x) \neq x\} \subset \omega.$$

It can be shown that $\sigma(H) = 1$. So, $H \notin S_G$ and

$$\omega \leq \operatorname{add}(\mathcal{S}_{\mathcal{G}}) \leq \operatorname{non}(\mathcal{S}_{\mathcal{G}}) \leq |H| = \omega.$$

Problem

In the group $G = FS_{\kappa}$ of finitely supported permutations of the cardinal κ consider the countable subgroup $H = FS_{\omega}$ consisting of all permutations $f : \kappa \to \kappa$ with finite support

$$\operatorname{supp}(f) = \{x \in \kappa : f(x) \neq x\} \subset \omega.$$

It can be shown that $\sigma({\cal H})=1.$ So, ${\cal H}
otin {\cal S}_G$ and

$$\omega \leq \operatorname{add}(\mathcal{S}_{\mathcal{G}}) \leq \operatorname{non}(\mathcal{S}_{\mathcal{G}}) \leq |\mathcal{H}| = \omega.$$

Problem

In the group $G = FS_{\kappa}$ of finitely supported permutations of the cardinal κ consider the countable subgroup $H = FS_{\omega}$ consisting of all permutations $f : \kappa \to \kappa$ with finite support

$$\operatorname{supp}(f) = \{x \in \kappa : f(x) \neq x\} \subset \omega.$$

It can be shown that $\sigma(H) = 1$. So, $H \notin S_G$ and

$$\omega \leq \operatorname{add}(\mathcal{S}_{\mathcal{G}}) \leq \operatorname{non}(\mathcal{S}_{\mathcal{G}}) \leq |\mathcal{H}| = \omega.$$

Problem

In the group $G = FS_{\kappa}$ of finitely supported permutations of the cardinal κ consider the countable subgroup $H = FS_{\omega}$ consisting of all permutations $f : \kappa \to \kappa$ with finite support

$$\operatorname{supp}(f) = \{x \in \kappa : f(x) \neq x\} \subset \omega.$$

It can be shown that $\sigma(H) = 1$. So, $H \notin S_G$ and

$$\omega \leq \operatorname{add}(\mathcal{S}_{\mathcal{G}}) \leq \operatorname{non}(\mathcal{S}_{\mathcal{G}}) \leq |\mathcal{H}| = \omega.$$

Problem

Theorem

If a group G admits a homomorphism onto an infinite compact Hausdorff group, then $non(\mathcal{S}_G) \ge cov(\mathcal{E})$.

Here $cov(\mathcal{E})$ denotes the smallest cardinality of a cover of an infinite compact metrizable group by closed Haar null subsets.

This cardinal was thoroughly studied by Bartoszynski and Shelah.

Corollary

For any infinite cardinal κ the group FS_{κ} admits no homomorphism onto an infinite compact Hausdorf topological group.

So, the properties of the ideal S_G depends essentially on the topologizability properties of the group G.

Theorem

If a group G admits a homomorphism onto an infinite compact Hausdorff group, then $non(\mathcal{S}_G) \ge cov(\mathcal{E})$.

Here $cov(\mathcal{E})$ denotes the smallest cardinality of a cover of an infinite compact metrizable group by closed Haar null subsets. This cardinal was thoroughly studied by Bartoszynski and Shelah.

Corollary

For any infinite cardinal κ the group FS_{κ} admits no homomorphism onto an infinite compact Hausdorf topological group.

So, the properties of the ideal S_G depends essentially on the topologizability properties of the group G.

Theorem

If a group G admits a homomorphism onto an infinite compact Hausdorff group, then $non(\mathcal{S}_G) \ge cov(\mathcal{E})$.

Here $cov(\mathcal{E})$ denotes the smallest cardinality of a cover of an infinite compact metrizable group by closed Haar null subsets. This cardinal was thoroughly studied by Bartoszynski and Shelah.

Corollary

For any infinite cardinal κ the group FS_{κ} admits no homomorphism onto an infinite compact Hausdorf topological group.

So, the properties of the ideal S_G depends essentially on the topologizability properties of the group G.

Let G be a compact topological group and λ be its Haar measure. For a subset $A \subset G$ let \overline{A} be the closure of A in X and

 A^{\bullet} (resp. A°) be the largest open set $U \subset G$ such that $U \setminus A$ is meager in G (resp. empty).

It is clear that A° is the interior of A and $A^{\circ} \subset A^{\bullet} \subset \overline{A}$.

Example: Each dense G_{δ} -set $A \subset G$ has $A^{\bullet} = G$.

Theorem

Any subset A of a compact topological group G has $\max\{\lambda_*(A), \lambda(A^\bullet)\} \le \sigma(A) \le \lambda(\bar{A}).$

Let G be a compact topological group and λ be its Haar measure. For a subset $A \subset G$ let \overline{A} be the closure of A in X and A^{\bullet} (resp. A°) be the largest open set $U \subset G$ such that $U \setminus A$ is meager in G (resp. empty).

It is clear that A° is the interior of A and $A^{\circ} \subset A^{\bullet} \subset \overline{A}$. Example: Each dense G_{δ} -set $A \subset G$ has $A^{\bullet} = G$.

Theorem

Any subset A of a compact topological group G has $\max\{\lambda_*(A), \lambda(A^\bullet)\} \le \sigma(A) \le \lambda(\bar{A}).$

Let G be a compact topological group and λ be its Haar measure. For a subset $A \subset G$ let \overline{A} be the closure of A in X and A^{\bullet} (resp. A°) be the largest open set $U \subset G$ such that $U \setminus A$ is meager in G (resp. empty). It is clear that A° is the interior of A and $A^{\circ} \subset A^{\bullet} \subset \overline{A}$.

Example: Each dense G_{δ} -set $A \subset G$ has $A^{\bullet} = G$.

Theorem

Any subset A of a compact topological group G has $\max\{\lambda_*(A), \lambda(A^\bullet)\} \le \sigma(A) \le \lambda(\bar{A}).$

Let *G* be a compact topological group and λ be its Haar measure. For a subset $A \subset G$ let \overline{A} be the closure of *A* in *X* and A^{\bullet} (resp. A°) be the largest open set $U \subset G$ such that $U \setminus A$ is meager in *G* (resp. empty). It is clear that A° is the interior of *A* and $A^{\circ} \subset A^{\bullet} \subset \overline{A}$. **Example:** Each dense G_{δ} -set $A \subset G$ has $A^{\bullet} = G$.

Theorem

Any subset A of a compact topological group G has $\max\{\lambda_*(A), \lambda(A^\bullet)\} \le \sigma(A) \le \lambda(\bar{A}).$

Let G be a compact topological group and λ be its Haar measure. For a subset $A \subset G$ let \overline{A} be the closure of A in X and A^{\bullet} (resp. A°) be the largest open set $U \subset G$ such that $U \setminus A$ is meager in G (resp. empty).

It is clear that A° is the interior of A and $A^{\circ} \subset A^{\bullet} \subset \overline{A}$.

Example: Each dense G_{δ} -set $A \subset G$ has $A^{\bullet} = G$.

Theorem

Any subset A of a compact topological group G has $\max\{\lambda_*(A), \lambda(A^\bullet)\} \le \sigma(A) \le \lambda(\bar{A}).$

Corollary

Each closed subset A of a compact topological group G has $\sigma(A) = \lambda(A)$.

This means that the Haar measure λ is completely determined by the Solecki submeasure:

Theorem

For a compact Hausdorff topological group G its Haar measure is a unique regular σ -additive Borel measure λ such that $\lambda(A) = \sigma(A)$ for each closed subset $A \subset G$.

So, the Haar measure, being a topologo-algebraic object has more essential algebraic component than could be expected.

Corollary

Each closed subset A of a compact topological group G has $\sigma(A) = \lambda(A)$.

This means that the Haar measure λ is completely determined by the Solecki submeasure:

Theorem

For a compact Hausdorff topological group G its Haar measure is a unique regular σ -additive Borel measure λ such that $\lambda(A) = \sigma(A)$ for each closed subset $A \subset G$.

So, the Haar measure, being a topologo-algebraic object has more essential algebraic component than could be expected.

Corollary

Each closed subset A of a compact topological group G has $\sigma(A) = \lambda(A)$.

This means that the Haar measure λ is completely determined by the Solecki submeasure:

Theorem

For a compact Hausdorff topological group G its Haar measure is a unique regular σ -additive Borel measure λ such that $\lambda(A) = \sigma(A)$ for each closed subset $A \subset G$.

So, the Haar measure, being a topologo-algebraic object has more essential algebraic component than could be expected.

Ramsey Applications of the Solecki submeasure

Theorem (Van der Waerden, 1927)

For any partition $\mathbb{Z} = A_1 \cup \cdots \cup A_n$ of integers there is a cells A_i of the partition containing arbitrarily long arithmetic progressions.

This theorem can be deduced from a more general:

Theorem (Gallai, \leq 1933)

For any finite partition $G = A_1 \cup \cdots \cup A_n$ of the group $G = \mathbb{Z}^n$ there is a cell A_i of the partition containing the homothetic copy of each finite set $F \subset G$.

Theorem (Van der Waerden, 1927)

For any partition $\mathbb{Z} = A_1 \cup \cdots \cup A_n$ of integers there is a cells A_i of the partition containing arbitrarily long arithmetic progressions.

This theorem can be deduced from a more general:

Theorem (Gallai, \leq 1933)

For any finite partition $G = A_1 \cup \cdots \cup A_n$ of the group $G = \mathbb{Z}^n$ there is a cell A_i of the partition containing the homothetic copy of each finite set $F \subset G$. By a homothetic copy of a set F in a group G we understand the image h(F) of F under a polynomial map $h: G \to G$ of the form $h(x) = a_0xa_1 \dots a_{n-1}xa_n$ for some constants $c_0, \dots, c_n \in G$.

If n = 1, then $h(x) = c_0 x c_1$ and we say that $h(F) = c_0 F c_1$ is a translation copy of the set F.

By a homothetic copy of a set F in a group G we understand the image h(F) of F under a polynomial map $h: G \to G$ of the form $h(x) = a_0xa_1 \dots a_{n-1}xa_n$ for some constants $c_0, \dots, c_n \in G$.

If n = 1, then $h(x) = c_0 x c_1$ and we say that $h(F) = c_0 F c_1$ is a translation copy of the set F.

Theorem (B., 2012)

If a subset A of a group G is:

- Solecki one, then A contains a translation copy of each finite subset F ⊂ G;
- Solecki positive, then A contains a homothetic copy of each finite subset F ⊂ G.

This theorem combined with the subadditivity of the Solecki submeasure implies the following generalization of Gallai's Theorem:

Corollary

For any finite partition $G = A_1 \cup \cdots \cup A_n$ of any group G there is a cell A_i of the partition containing a homothetic copy of each finite subset $F \subset G$.

Theorem (B., 2012)

If a subset A of a group G is:

- Solecki one, then A contains a translation copy of each finite subset F ⊂ G;
- Solecki positive, then A contains a homothetic copy of each finite subset F ⊂ G.

This theorem combined with the subadditivity of the Solecki submeasure implies the following generalization of Gallai's Theorem:

Corollary

For any finite partition $G = A_1 \cup \cdots \cup A_n$ of any group G there is a cell A_i of the partition containing a homothetic copy of each finite subset $F \subset G$.

Theorem (B., 2012)

If a subset A of a group G is:

- Solecki one, then A contains a translation copy of each finite subset F ⊂ G;
- Solecki positive, then A contains a homothetic copy of each finite subset F ⊂ G.

This theorem combined with the subadditivity of the Solecki submeasure implies the following generalization of Gallai's Theorem:

Corollary

For any finite partition $G = A_1 \cup \cdots \cup A_n$ of any group G there is a cell A_i of the partition containing a homothetic copy of each finite subset $F \subset G$.

Theorem (Green, Tao, 2008)

The set of prime numbers contains arbitarily long arithmetic progressions.

Unfortunately, this theorem cannot be deduced from our result because of:

Proposition

The set of primes is Solecki null in the group \mathbb{Z} .

Theorem (Green, Tao, 2008)

The set of prime numbers contains arbitarily long arithmetic progressions.

Unfortunately, this theorem cannot be deduced from our result because of:

Proposition

The set of primes is Solecki null in the group \mathbb{Z} .

Theorem (Steinhaus-Weil)

For any measurable subset A of positive Haar measure $\lambda(A)$ in a compact topological group G the difference set AA^{-1} is a neighboorhood of zero in G.

Problem

Can the Haar measure in this theorem replaced with the Solecki submeasure σ or the right Solecki density σ^R ?

Answer

Partially Yes! (for the right Solecki density σ^R).

Theorem (Steinhaus-Weil)

For any measurable subset A of positive Haar measure $\lambda(A)$ in a compact topological group G the difference set AA^{-1} is a neighboorhood of zero in G.

Problem

Can the Haar measure in this theorem replaced with the Solecki submeasure σ or the right Solecki density σ^R ?

Answer

Partially Yes! (for the right Solecki density σ^R).

Theorem (Steinhaus-Weil)

For any measurable subset A of positive Haar measure $\lambda(A)$ in a compact topological group G the difference set AA^{-1} is a neighboorhood of zero in G.

Problem

Can the Haar measure in this theorem replaced with the Solecki submeasure σ or the right Solecki density σ^R ?

Answer

Partially Yes! (for the right Solecki density σ^R).

Right-Solecki one, null, and positive sets

A subset A of a group G is called

- right-Solecki null if $\sigma^R(A) = 0$;
- right-Solecki positive if $\sigma^R(A) > 0$;
- right-Solecki one if $\sigma^R(A) = 1$ (equivalently, if $\sigma_R(A) = 1$).

Right-Solecki one sets can be characterized as follows:

Proposition

A subset A of a group G is right-Solecki one iff for each finite subset $F \subset G$ there is a point $y \in G$ such that $Fy \subset A$.

Right-Solecki one, null, and positive sets

A subset A of a group G is called

- right-Solecki null if $\sigma^R(A) = 0$;
- right-Solecki positive if $\sigma^{R}(A) > 0$;
- right-Solecki one if $\sigma^R(A) = 1$ (equivalently, if $\sigma_R(A) = 1$).

Right-Solecki one sets can be characterized as follows:

Proposition

A subset A of a group G is right-Solecki one iff for each finite subset $F \subset G$ there is a point $y \in G$ such that $Fy \subset A$.

For a subset A of a group G the cardinal

- pack_L(A) = sup{|E| : E ⊂ G (xA)_{x∈E} is disjoint} is called the left packing index of A;
- cov_L(A) = min{|E| : E ⊂ G, EA = G} is called the left covering number of A.

Theorem

$$\operatorname{cov}_{L}(AA^{-1}) \leq \operatorname{pack}_{L}(A) \leq \frac{1}{\sigma^{R}(A)}.$$

Corollary

For a subset A of a group G the cardinal

- pack_L(A) = sup{|E| : E ⊂ G (xA)_{x∈E} is disjoint} is called the left packing index of A;
- cov_L(A) = min{|E| : E ⊂ G, EA = G} is called the left covering number of A.

Theorem

$$\operatorname{cov}_{L}(AA^{-1}) \leq \operatorname{pack}_{L}(A) \leq \frac{1}{\sigma^{R}(A)}.$$

Corollary

For a subset A of a group G the cardinal

- pack_L(A) = sup{|E| : E ⊂ G (xA)_{x∈E} is disjoint} is called the left packing index of A;
- cov_L(A) = min{|E| : E ⊂ G, EA = G} is called the left covering number of A.

Theorem

$$\operatorname{cov}_{L}(AA^{-1}) \leq \operatorname{pack}_{L}(A) \leq \frac{1}{\sigma^{R}(A)}.$$

Corollary

For a subset A of a group G the cardinal

- pack_L(A) = sup{|E| : E ⊂ G (xA)_{x∈E} is disjoint} is called the left packing index of A;
- cov_L(A) = min{|E| : E ⊂ G, EA = G} is called the left covering number of A.

Theorem

$$\operatorname{cov}_{L}(AA^{-1}) \leq \operatorname{pack}_{L}(A) \leq \frac{1}{\sigma^{R}(A)}.$$

Corollary

Problem (Protasov)

Let $G = A_1 \cup \cdots \cup A_n$ be a finite partition of a group G. Is $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i?

Theorem (Protasov-B., \leq 2003)

For any partition $G = A_1 \cup \cdots \cup A_n$ of a group G there is $i \leq n$ such that $\operatorname{cov}_L(A_iA_i^{-1}) \leq 2^{2^{n-1}-1}$.

Problem (Protasov)

Let $G = A_1 \cup \cdots \cup A_n$ be a finite partition of a group G. Is $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i?

Theorem (Protasov-B., ≤ 2003)

For any partition $G = A_1 \cup \cdots \cup A_n$ of a group G there is $i \leq n$ such that $\operatorname{cov}_L(A_iA_i^{-1}) \leq 2^{2^{n-1}-1}$.

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some *i* and hence

$$\operatorname{cov}_{L}(A_{i}A_{i}^{-1}) \leq \frac{1}{\sigma^{R}(A)} \leq \frac{1}{\sigma_{R}(A)} \leq n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some *i* by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^{R(A)}} \le n$.

伺 ト イ ヨ ト イ ヨ ト

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some *i* and hence

$$\operatorname{cov}_L(A_i A_i^{-1}) \le rac{1}{\sigma^R(A)} \le rac{1}{\sigma_R(A)} \le n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some i by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^R(A)} \le n$.

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some i and hence

$$\operatorname{cov}_{L}(A_{i}A_{i}^{-1}) \leq \frac{1}{\sigma^{R}(A)} \leq \frac{1}{\sigma_{R}(A)} \leq n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some *i* by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^R(A)} \le n$.

< 同 > < 回 > < 回 >

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some *i* and hence

$$\operatorname{cov}_{L}(A_{i}A_{i}^{-1}) \leq \frac{1}{\sigma^{R}(A)} \leq \frac{1}{\sigma_{R}(A)} \leq n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some *i* by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^R(A)} \le n$.

< 同 > < 回 > < 回 >

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some *i* and hence

$$\operatorname{cov}_{L}(A_{i}A_{i}^{-1}) \leq \frac{1}{\sigma^{R}(A)} \leq \frac{1}{\sigma_{R}(A)} \leq n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some *i* by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^R(A)} \le n$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A subset $A \subset G$ is called *inner-invariant* if $\forall x \in G \ xAx^{-1} = A$.

Theorem (B.-Protasov-Slobodianiuk, 2013)

Let $G = A_1 \cup \cdots \cup A_n$ be a partition of a group G. If G is Solecki-amenable or all sets A_i are inner-invariant, then $\operatorname{cov}_L(A_iA_i^{-1}) \leq n$ for some i.

Proof.

If G is Solecki-amenable, then the right Solecki submeasure σ_R is subadditive and then $\sigma_R(A_i) \ge 1/n$ for some *i* and hence

$$\operatorname{cov}_{L}(A_{i}A_{i}^{-1}) \leq \frac{1}{\sigma^{R}(A)} \leq \frac{1}{\sigma_{R}(A)} \leq n.$$

If each set A_i is inner-invariant, then $\sigma(A_i) \ge \frac{1}{n}$ for some *i* by the subadditivity of the Solecki submeasure. The inner invariance of A_i implies that $\sigma^R(A_i) = \sigma(A_i) \ge 1/n$ and $\operatorname{cov}_L(A_iA_i^{-1}) \le \frac{1}{\sigma^R(A)} \le n$.

< 同 > < 回 > < 回 >

The Bohr topology on a group G is the largest totally bounded group topology on G.

Equivalently, it can be defined as the smallest topology on G in which every homomorphism $h: G \to K$ to a compact Hausdorff topological group K is continuous.

It this case we can assume that $K = \prod_{n=1}^{\infty} O(n)$.

Elements of the Bohr topology are called Bohr open subsets of G.

- The Bohr topology on a group G is the largest totally bounded group topology on G.
- Equivalently, it can be defined as the smallest topology on G in which every homomorphism $h: G \to K$ to a compact Hausdorff topological group K is continuous.
- It this case we can assume that $K = \prod_{n=1}^{\infty} O(n)$.
- Elements of the Bohr topology are called Bohr open subsets of G.

The Bohr topology on a group G is the largest totally bounded group topology on G.

Equivalently, it can be defined as the smallest topology on G in which every homomorphism $h: G \to K$ to a compact Hausdorff topological group K is continuous.

It this case we can assume that $K = \prod_{n=1}^{\infty} O(n)$.

Elements of the Bohr topology are called Bohr open subsets of G.

The Bohr topology on a group G is the largest totally bounded group topology on G.

Equivalently, it can be defined as the smallest topology on G in which every homomorphism $h: G \to K$ to a compact Hausdorff topological group K is continuous.

It this case we can assume that $K = \prod_{n=1}^{\infty} O(n)$.

Elements of the Bohr topology are called Bohr open subsets of G.

Now we shall generalize results of Bogoliuboff, Følner, Cotlar, Ricabarra (1954), Ellis, Keynes (1972), Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For each right-Solecki positive set A in an amenable group G there are a Bohr open neighborhood $U \subset G$ of the unit 1_G and a right-Solecki null subset $N \subset G$ such that $U \setminus N \subset AA^{-1}$.

Corollary (B., 2013)

For any right-Solecki positive set A, B in an amenable group G the set $B^{-1}AA^{-1}$ has non-empty interior and $AA^{-1}BB^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on the group G.

Problem (Ellis)

Now we shall generalize results of Bogoliuboff, Følner, Cotlar, Ricabarra (1954), Ellis, Keynes (1972), Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For each right-Solecki positive set A in an amenable group G there are a Bohr open neighborhood $U \subset G$ of the unit 1_G and a right-Solecki null subset $N \subset G$ such that $U \setminus N \subset AA^{-1}$.

Corollary (B., 2013)

For any right-Solecki positive set A, B in an amenable group G the set $B^{-1}AA^{-1}$ has non-empty interior and $AA^{-1}BB^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on the group G.

Problem (Ellis)

Now we shall generalize results of Bogoliuboff, Følner, Cotlar, Ricabarra (1954), Ellis, Keynes (1972), Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For each right-Solecki positive set A in an amenable group G there are a Bohr open neighborhood $U \subset G$ of the unit 1_G and a right-Solecki null subset $N \subset G$ such that $U \setminus N \subset AA^{-1}$.

Corollary (B., 2013)

For any right-Solecki positive set A, B in an amenable group G the set $B^{-1}AA^{-1}$ has non-empty interior and $AA^{-1}BB^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on the group G.

Problem (Ellis)

Now we shall generalize results of Bogoliuboff, Følner, Cotlar, Ricabarra (1954), Ellis, Keynes (1972), Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For each right-Solecki positive set A in an amenable group G there are a Bohr open neighborhood $U \subset G$ of the unit 1_G and a right-Solecki null subset $N \subset G$ such that $U \setminus N \subset AA^{-1}$.

Corollary (B., 2013)

For any right-Solecki positive set A, B in an amenable group G the set $B^{-1}AA^{-1}$ has non-empty interior and $AA^{-1}BB^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on the group G.

Problem (Ellis)

The following theorem generalizes results of Jin (2002) and Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For any right-Solecki positive sets A, B in an amenable group G the sumset AB contains the intersection $U \cap T$ for some non-empty Bohr open set U and some right-Solecki one set $T \subset G$.

Corollary (B., 2013)

For any right-Solecki positive sets A, B in an amenable group G the set $ABB^{-1}A^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on G.

→ < Ξ → <</p>

The following theorem generalizes results of Jin (2002) and Beiglböck, Bergelson, Fish (2010).

Theorem (B., 2013)

For any right-Solecki positive sets A, B in an amenable group G the sumset AB contains the intersection $U \cap T$ for some non-empty Bohr open set U and some right-Solecki one set $T \subset G$.

Corollary (B., 2013)

For any right-Solecki positive sets A, B in an amenable group G the set $ABB^{-1}A^{-1}$ is a neighborhood of the unit 1_G in the Bohr topology on G.

The Bohr topology on a group G is trivial if and only if each homomorphism $h: G \to K$ to a compact Hausdorff topological group K is constant.

Examples of groups with trivial Bohr topology are:

- the group S_X of all permutations of an infinite set X;
- the group A_X of all even finitely supported permutations of an infinite set X.

The Bohr topology on a group G is trivial if and only if each homomorphism $h: G \to K$ to a compact Hausdorff topological group K is constant.

Examples of groups with trivial Bohr topology are:

- the group S_X of all permutations of an infinite set X;
- the group A_X of all even finitely supported permutations of an infinite set X.

The Bohr topology on a group G is trivial if and only if each homomorphism $h: G \to K$ to a compact Hausdorff topological group K is constant.

Examples of groups with trivial Bohr topology are:

- the group S_X of all permutations of an infinite set X;
- the group A_X of all even finitely supported permutations of an infinite set X.

The Bohr topology on a group G is trivial if and only if each homomorphism $h: G \to K$ to a compact Hausdorff topological group K is constant.

Examples of groups with trivial Bohr topology are:

- the group S_X of all permutations of an infinite set X;
- the group A_X of all even finitely supported permutations of an infinite set X.

The Bohr topology on a group G is trivial if and only if each homomorphism $h: G \to K$ to a compact Hausdorff topological group K is constant.

Examples of groups with trivial Bohr topology are:

- the group S_X of all permutations of an infinite set X;
- the group A_X of all even finitely supported permutations of an infinite set X.

Characterizing amenable groups with trivial Bohr topology

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

4 AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;

 $G = B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group *G* is odd if every element of *G* has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_i A_i^{-1} = G$.

Characterizing amenable groups with trivial Bohr topology

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

- AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;
- $= B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group *G* is odd if every element of *G* has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_iA_i^{-1} = G$.

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

- AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;
- $G = B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group *G* is odd if every element of *G* has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_iA_i^{-1} = G$.

Characterizing amenable groups with trivial Bohr topology

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

- **(**) AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;
- $G = B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group G is odd if every element of G has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_iA_i^{-1} = G$.

Characterizing amenable groups with trivial Bohr topology

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

- **(**) AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;
- $G = B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group G is odd if every element of G has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_i A_i^{-1} = G$.

Theorem

If an amenable group G has trivial Bohr topology, then for any right-Solecki positive sets $A, B \subset G$ we get

- **(**) AB is right-Solecki one and $G \setminus AA^{-1}$ is right-Solecki null;
- $G = B^{-1}AA^{-1} = AA^{-1}A = ABB^{-1}A^{-1}.$

Theorem

An amenable group G has trivial Bohr topology iff for every partition $G = A_1 \cup \cdots \cup A_n$ there is a cell A_i with $A_i A_i^{-1} A_i = G$.

A group G is odd if every element of G has odd order.

Theorem (B.-Nykyforchyn-Gavrylkiv, 2008)

A group G is odd iff for any partition $G = A_1 \cup A_2$ there is a cell A_i of the partition such that $A_i A_i^{-1} = G$.

э

(日) (同) (三) (三)

Corollary

If a subset A of an infinite alternating group $G = A_X$ is right-Solecki positive, then $AA^{-1}A = G$.

Problem

Is $AA^{-1}A = G$ for each (inner-invariant) right-Solecki positive set A in an infinite permutation group $G = S_X$?

Applying some results of Bergman (2006) it is possible to prove:

Theorem (B., 2013)

For any inner-invariant Solecki positive subset A of an infinite permutation group $G = S_X$ we get $(AA^{-1})^{18} = G$.

Corollary

If a subset A of an infinite alternating group $G = A_X$ is right-Solecki positive, then $AA^{-1}A = G$.

Problem

Is $AA^{-1}A = G$ for each (inner-invariant) right-Solecki positive set A in an infinite permutation group $G = S_X$?

Applying some results of Bergman (2006) it is possible to prove:

Theorem (B., 2013)

For any inner-invariant Solecki positive subset A of an infinite permutation group $G = S_X$ we get $(AA^{-1})^{18} = G$.

/□ ▶ < 글 ▶ < 글

Corollary

If a subset A of an infinite alternating group $G = A_X$ is right-Solecki positive, then $AA^{-1}A = G$.

Problem

Is $AA^{-1}A = G$ for each (inner-invariant) right-Solecki positive set A in an infinite permutation group $G = S_X$?

Applying some results of Bergman (2006) it is possible to prove:

Theorem (B., 2013)

For any inner-invariant Solecki positive subset A of an infinite permutation group $G = S_X$ we get $(AA^{-1})^{18} = G$.

Problem

Is there a group G such that $\sigma(A) \in \{0,1\}$ for any subset $A \subset G$?

Problem

Let H be a meager analytic subgroup of a compact topological group G. Is H Solecki null? (Yes, if G is abelian).

Problem

Is there a group G such that $\sigma(A) \in \{0,1\}$ for any subset $A \subset G$?

Problem

Let H be a meager analytic subgroup of a compact topological group G. Is H Solecki null? (Yes, if G is abelian).

.

Problem

Is there a group G such that $\sigma(A) \in \{0,1\}$ for any subset $A \subset G$?

Problem

Let H be a meager analytic subgroup of a compact topological group G. Is H Solecki null? (Yes, if G is abelian).

T.Banakh, *Solecki submeasures and densities on groups*, preprint (arXiv:1211.0717).

* * * Fhanks!

4 3 b

T.Banakh, *Solecki submeasures and densities on groups*, preprint (arXiv:1211.0717).

* * * Thanks!