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Ramsey Theorem. For each k,n > 1 and coloring
¢ : [w]® — n, there is an infinite M C w such that
¢ restricted to [M]¥ monochromatic.



Erdos-Rado Canonization Theorem. For each ¥k > 1 and
each equivalence relation E on [w]k, there is an infinite M C w

such that E | [M]* is canonical,

i.e. E[[M]* is given by E¥ for some I C k.

For a,b € [w]*, a EX¥ biff Vi€ I, a; = b;.

Note. The Erd6s-Rado Theorem is a canonization theorem for
the fronts (barriers) of the form [w]¥ on the Ellentuck space.



Def. F C [w]<% is a front on [w]¥ iff (i) for each X € [w]¥, there
is an a € F such that a C X; and (ii) for a,be F, a[Z b.

Def. For a front F, a map ¢ . F — N is irreducible if ¢ is
(a) inner, i.e. p(a) Ca for all a € F, and
(b) Nash-Williams, i.e. for each a,b € F, p(a) Z o(b).

Pudlak-Rodl Thm. For every front (barrier) 7 on N and every
equivalence relation E on F, there is an infinite M C N such that
E | (FIM) is represented by an irreducible mapping defined on

FIM.

Def. FIM ={a € F:aC M}.



Let 8 =0,1y=1,18=31§=6, ...

T1(0) = {{),(0)}. T1(n) = {{), (n),(n,d) : ln <i <y, 4}, n>0.

T, = Un<w Tl(n) (Draw T, and Sl)

The space (R{,<1,r1)
X eRqIffF XCTy and X = T;.
For X, Y e R, Y <{ X iff Y C X.
r]%(X) = the "“initial segment” of X of length k.
AR: = {ri(X) : X € R1}. AR = Upey ARL.

e R1 comes immediately after the Ellentuck space in complexity.
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The spaces (Ra, <a,7%), a < w1.

Recursive Construction. Two cases: « is a successor ordinal, «
is a limit ordinal. (Draw T», So, Ty, Su.)

X € Ry iff X C Ty and X 2 T,,.
For X, Y € Ra, Y <o X iff Y C X.
re(X) = the “initial segment” of X of length k.

ARS = {r&(X) : X € R1}.  ARY = U, ARS.



Topological Ramsey spaces (R, <,r)
basic open sets [a, A] ={X € R : In(rp(X) =a) and X < A}.

Def. X C R is Ramsey iff for each 0 # [a, A], there is a B € [a, A]
such that either (i) [a,B] C X or else (ii) [a,B]NX = 0.

Def. [Todorcevic] A triple (R,<,r) is a topological Ramsey
space of every property of Baire subset of R is Ramsey and if
every meager subset of R is Ramsey null.

Abstract Ellentuck Theorem. [Todorcevic]
If (R,<,r) satisfies A.1 - A.4 and R is closed (in ARY), then
every property of Baire subset is Ramsey.

Classic Example. The Ellentuck space is a topological Ramsey
sSpace.



Thm. [D/T 2,3] For each a <wi, (Ra, <a,r%) is a topological
Ramsey space.

Rem 1. To each topological Ramsey space there correspond
notions of selective and Ramsey ultrafilter. (They are not nec-
essarily the same.) R, induces Laflamme’s ultrafilter U,.

Rem 2. (Ro,<p,r9) is the Ellentuck space.



Ramsey Classification Theorems for Fronts on Rq, a < wq

Def. An equivalence relation E on ARy is canonical iff it is in-
duced by a downward closed subset of r{(Sq).

Ramsey Classification Theorem for AR{. [D/T 2,3]

Given A € Ra, k > 1 and an equivalence relation E on ARY, there
is a C <q A such that E [ (AR{|C) is canonical.

Numbers of Canonical Equivalence Relations.
AR (2L +1)(2241)--- (28 +1).
AR%: 4. AR3: 4-6. ARZ 4.6 -((2°+1)(2%+1)+1).



Def. F C AR% is a front on R, iff for each Y € Ry, there is an
a € F such that a C Y; and for a,b e F, a[Z b.

Def. For F a front, a function ¢ on F is
1. inner if p(a) C a for all a € F.
2. Nash-Williams if p(a) IZ po(b), for all a,b € F.

Def. Let E be an equivalence relation on a front F.
1. ¢ represents E iff for all a,b € F, aEb iff p(a) = ¢©(b).

2. E is canonical iff E is represented by an inner Nash-Williams
function ¢, maximal among all inner Nash-Williams functions
representing E.

Ramsey Classification Theorem for fronts on R,. [D/T 2,3]
Given any front F on Rq, A € Ro and equivalence relation E on
F, there is a C <4 A such that E [ (F|C) is canonical.
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Motivation: Investigate the Structure of Tukey types of
ultrafilters near the bottom of the Rudin-Keisler hierarchy

Def. U >prg V iff there is a function h : w — w such that
V = hUU) = (h'U).

Def. U > V iff there is a cofinal map h : U4 — V taking cofinal
subsets of U to cofinal subsets of V.

U>7Y = cof(d) > cof(Ud) and add(Uf) < add(V).
U=V IifFU <,V and V <7 U.
Fact. U =7V iff Y and V are cofinally equivalent.

Fact. U >pi V implies U >7 V.
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Thm. [Laflamme 89] For each 1 < o < wi, there is a forcing
Po = ([w]¥, <p_) which adds a generic ultrafilter U, such that

1. U, 1S a rapid p-point satisfying certain partition properties.

2. The nonprincipal RK predecessors of U, form a decreasing
chain of order type (a+ 1)*, the least of which is Ramsey.

3. U, has complete combinatorics over HOD(R)V G,

Question 1. What are the Tukey types below U,”?

Rem. U/ is weakly Ramsey but not Ramsey.
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Thm. [Todorcevic in [Raghavan/Todorcevic]] If U is Ramsey
and V < U, then V is isomorphic to some iterated Fubini prod-
uct of U.

Question 2. Is there some similar characterization of the ultra-
filters <7 U, in terms of Rudin-Keisler?

Def. U is Ramsey iff for each function ¢ : [w]?2 — 2, there is a
U € U such that ¢ is monochromatic on [U]?.
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Answers: Yes and Yes.
Fact. Each U, is a p-point.

Def. U is a p-point if for each sequence Xg O X1 DO ... inU, there
isa Y €U such that for each n<w, Y C* X, (i.e. |V \ Xn| <w).

Theorem. [D/T 1] If U is a p-point and U >7 W, then there is
an h : U — VYW which is continuous, monotone, and cofinal.

Key Ideas. [D/T 2,3]

1. If Uy >7 V, then there is a front F on Ry, and a function
f :F — w such that f(Uy|F) =V. This f induces an equiva-
lence relation on F.

2. The Ramsey Classification Theorem for R, gives understand-
ing of the function f. Ramsey Theory is essential to this
proof, which could not be done just by forcing.
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The Tukey and Rudin-Keisler types Tukey below U,

Thm. [D/T 2,3] For all 1 < a < wy, there is a countable col-
lection of rapid p-points ygf such that, if V <p Uy, then V is
isomorphic to a tree ultrafilter (a countable iteration of Fubini
products) of ultrafilters from among the )g.

The S are the downward closed subsets of Sqa(n), n < w, and
Vs = ns(Ua|Ra(n)).

Thm. [D/T 2,3] For all 1 < a < wy, the Tukey types of all ul-
trafilters Tukey reducible to U, form a decreasing chain of order
type (a«+ 1)*. The Tukey least of these is a Ramsey ultrafilter.
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