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Last Time

If S is stationary, then Refl(S) means that every stationary
subset of S reflects.
�µ implies Refl(S) fails for every stationary S ⊆ µ+.
If µ is singular and �µ fails, then 0] exists.
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Current Project

Theorem
Suppose κ < λ are regular cardinals and λ carries a uniform
κ+-complete ultrafilter. Then Refl(Sλ

κ) holds.

Lemma

Suppose κ < λ are regular cardinals, S ⊆ Sλ
κ has no stationary

initial segment, and Aδ is cofinal in δ of order-type κ for each
δ ∈ S. Then for each β < µ+, there is a regressive function Fβ
with domain S ∩ β such that the family {Aα \ Fβ(α) : α ∈ S ∩ β}
is pairwise disjoint.
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Proof of Theorem

Assume
U is a uniform κ+-complete ultrafilter on λ,
〈Aα : α ∈ S〉 is as in the assumptions of the lemma, and
〈Fβ : β < µ+〉 is as in the conclusion of the lemma.
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Proof of Theorem

Given α ∈ S and ε < µ+, define Bα
ε to be those β > α for which

Fβ(α) is contained in the “first ε elements of Aα”.

Then ⋃
ε<κ

Aακ = (α, λ). (1)

Hence there is ε(α) such that Bα
ε(α) ∈ U.
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Proof of Theorem 1

Now consider the function F : S → λ defined by setting F (α) to
be the ε(α) + 1st element of Aα.

Given α < γ in S, we know

Bα
ε(α) ∩ Bγ

ε(γ) 6= ∅, (2)

so choose β in both of these sets.

Todd Eisworth
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Proof of Theorem 1

We know

Aα \ F (α) ⊆ Aα \ Fβ(α),

Aγ \ F (γ) ⊆ Aγ \ Fγ(α), and

(Aα \ Fβ(α)) ∩ (Aγ \ Fβ(γ)) = ∅.

Thus Aα \ F (α) and Aγ \ F (γ) are disjoint, hence F disjointifies
{Aα : α ∈ S}.

This is impossible as S is stationary, hence Theorem 1 holds.
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Remember

This implies the following statements:
1 If κ < λ are regular with κ compact, then Refl(Sλ

<κ) holds.

2 If µ is a singular limit of compact cardinals, then Refl(µ+)
holds.

Todd Eisworth
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Definition
ADSµ means there is a family A = 〈Aα : α < µ+〉 of unbounded
subsets of µ (not µ+) such that 〈Aα : α < β〉 can be disjointified
for each β < µ+.

Note

“ADS” stands for “almost disjoint sets”.

no subfamily of A of cardinality µ+ can be disjointified.

ADSµ holds if µ is regular. (blackboard)
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ADSµ, µ singular

What goes wrong if µ is singular?

Note: If ADSµ holds for µ singular, then we may assume that
each Aα is of order-type cf(µ).
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We will work with cardinals of the form µ+ where µ is singular
of countable cofinality.

This simplifies the statements and proofs of theorems. In the
end we will simply state the full results.
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Restrictions on ultrafilters

Theorem (Theorem 2)
Suppose µ is singular of countable cofinality and ADSµ holds. If
I is a countably complete proper ideal on µ+ containing the
bounded ideal, then we can find µ+ disjoint I-positive sets.

Todd Eisworth
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Proof of Theorem 2

Let 〈Aα : α < µ〉 be an ADSµ-family, with each Aα of order-type
ω, and let ηα : ω → Aα be the increasing enumeration of Aα.

For β < µ+, let Fβ disjointify 〈Aα : α < β〉.

For α < µ+ and n < ω, define Bα
n be the set of β > α for which

Fβ(α) < ηα(n).

“The disjointer for β removes the first m elements of Aα for
some m < n.”

Todd Eisworth
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〈Bα
n : n < ω〉 is increasing with union (α, µ+).

(α, µ+) /∈ I and I is countably complete, so

find n(α) such that Bα
n(α) /∈ I.

Let xα = ηα(n(α) + 1).

Conclusion
xα ∈ Aα \ Fβ(α) for an I-positive set of β.

Todd Eisworth



Introduction
ADSµ

〈Bα
n : n < ω〉 is increasing with union (α, µ+).

(α, µ+) /∈ I and I is countably complete, so

find n(α) such that Bα
n(α) /∈ I.

Let xα = ηα(n(α) + 1).

Conclusion
xα ∈ Aα \ Fβ(α) for an I-positive set of β.

Todd Eisworth



Introduction
ADSµ

〈Bα
n : n < ω〉 is increasing with union (α, µ+).

(α, µ+) /∈ I and I is countably complete, so

find n(α) such that Bα
n(α) /∈ I.

Let xα = ηα(n(α) + 1).

Conclusion
xα ∈ Aα \ Fβ(α) for an I-positive set of β.

Todd Eisworth



Introduction
ADSµ

〈Bα
n : n < ω〉 is increasing with union (α, µ+).

(α, µ+) /∈ I and I is countably complete, so

find n(α) such that Bα
n(α) /∈ I.

Let xα = ηα(n(α) + 1).

Conclusion
xα ∈ Aα \ Fβ(α) for an I-positive set of β.

Todd Eisworth



Introduction
ADSµ

〈Bα
n : n < ω〉 is increasing with union (α, µ+).

(α, µ+) /∈ I and I is countably complete, so

find n(α) such that Bα
n(α) /∈ I.

Let xα = ηα(n(α) + 1).

Conclusion
xα ∈ Aα \ Fβ(α) for an I-positive set of β.

Todd Eisworth



Introduction
ADSµ

How many possibilities exist for xα?

Fix x∗ < µ such that Z := {α < µ+ : xα = x∗} is of size µ+.

For α ∈ z, let Yα := {β < µ+ : x∗ ∈ Aα \ Fβ(α)}.

Yα is I-positive for each α ∈ Z ,

〈Yα : α ∈ Z 〉 is a pairwise disjoint family. (blackboard)

Conclusion
There are µ+ disjoint I-positive subsets of µ+. Hence uniform
countably complete filters on µ+ are far from being ultrafilters.
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Corollary
Suppose µ is singular of countable cofinality and there is a
uniform countably-complete ultrafilter on µ+. Then ADSµ fails.

In particular, if κ is compact, then ADSµ fails for all singular
µ > κ of countable cofinality.
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Full Theorem

Theorem
Suppose µ is singular and ADSµ holds. If I is a proper
cf(µ)-indecomposable ideal on µ+ extending the bounded ideal,
then there are µ+ pairwise disjoint I-positive subsets of µ+.

Corollary
If κ is compact, then ADSµ fails for every singular µ > κ.
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Connection to cardinal arithmetic

Theorem

Suppose µ is singular of countable cofinality and κℵ0 < µ for all
κ < µ. If µℵ0 > µ+, then ADSµ holds.

Todd Eisworth
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Idea of Proof

Suffices to find an “ADSµ-family” in some set A of cardinality µ.

Suppose {xα : α < µ} is a collection of distinct elements of
[µ]ℵ0 , and let ηα : ω → xα be a bijection.

Define Aα = {ηα � ` : ` < ω} ∈ [<ωµ]ℵ0

We construct {xα : α < µ+} ⊆ [µ]ℵ0 so that A = {Aα : α < µ+}
witnesses ADSµ.

Todd Eisworth
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Lemma
Lemma 1 If F ⊆ [µ]<µ is of cardinality µ+, then there is an
x ∈ [µ]ℵ0 that is not covered by any member of F .

If A ∈ F , then |[A]ℵ0 | < µ. So F can cover at most µ+ elements
of [µ]ℵ0 . But µℵ0 > µ+.
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For β < µ+, fix a sequence 〈Aβn : n < ω〉 such that

Aβ0 = ∅

β =
⋃

n<ω Aβn

|Aβn | < µ for all n < ω

Aβn ⊆ Aβn+1.

Todd Eisworth
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By induction on α < µ+, choose xα ∈ [µ]ℵ0 such that for no
β < µ+ and n < ω is xα a subset of

⋃
{xγ : γ ∈ Aβn ∩ α}.

Why is this possible? See Lemma 1.
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This give us a family 〈xα : α < µ+〉.

Let ηα : ω → xα be a bijection.

We want the family of sets of the form {ηα � ` : ` < ω} to
witness ADSµ.
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Given β < µ+, we need a function hβ : β → ω such that

∆(α, γ) ≤ max{hβ(α),hβ(γ)} (3)

for all α, γ < β, where

∆(α, γ) = least ` such that ηα(`) 6= ηγ(`). (4)

Todd Eisworth
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Lemma

For each n < ω, {xα : α ∈ Aβn} has a one-to-one choice
function f βn .

We define f βn � (Aβn ∩ α) be induction on α.

α = 0 and α limit are trivial.

If α = γ + 1, then xγ is not a subset of
⋃
{xε : ε ∈ Aβn ∩ γ} so we

can define f βn (γ).

Todd Eisworth
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Define kβ : β → ω as follows:

For α ∈ Aβn+1 \ Aβn , kβ(α) is the unique k < ω such that
f βn (α) = ηα(k).

Todd Eisworth
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Lemma
For fixed ν ∈<ω µ, {α < β : ν = ηα � kβ(α) + 1} contains at
most one element of each Aβn+1 \ Aβn .

Suppose α 6= γ in Aβn+1 \ Aβn and

ν = ηα � (kβ(α) + 1) = ηγ � (kβ(γ) + 1). (5)

Then

f βn (α) = ηα(kβ(α)) = ν(kβ(α)) = ν(kβ(γ)) = ηγ(kβ(γ)) = f βn (γ).
(6)

Contradiction.
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For α < β, define

E(α) = {γ < β : max{kβ(α), kβ(γ)} < ∆(α, γ)}. (7)

E(α) consists of those γ for which kβ has failed to disjointify Aα
and Aγ .

Todd Eisworth



Introduction
ADSµ

For α < β, define

E(α) = {γ < β : max{kβ(α), kβ(γ)} < ∆(α, γ)}. (7)

E(α) consists of those γ for which kβ has failed to disjointify Aα
and Aγ .

Todd Eisworth



Introduction
ADSµ

Lemma
E(α) is at most countable.

If not, find k∗ such that B = {γ ∈ E(α) : kβ(γ) = k∗} is
uncountable. Set ν = ηα � k∗ + 1. Then for γ ∈ B, we have

ηγ � kβ(γ + 1) = ηα � k∗ = ν, (8)

contradicting the previous lemma.
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Note that γ ∈ E(α) if and only if α ∈ E(γ), so we can define a
graph Γ on β by connecting α and γ if and only if γ ∈ E(γ).

Γ has countable valency, so connected components of Γ are at
most countable.

kβ “works” if α and γ are in different connected components.

Each connected component can be disjointified because it is
countable.

It is straightforward now to “correct” kβ to a function which
works everywhere.

Todd Eisworth
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Corollary
If κ is compact, then the Singular Cardinals Hypothesis holds
above κ.

If µ is the least failure of SCH above κ, then ADSµ holds by the
preceding theorem. But ADSµ cannot hold above a compact
cardinal by our earlier work.

Todd Eisworth
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