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Introduction

Background

Recently it has become a trend in Mathematical Analysis to look
for large algebraic structures ( infinite dimensional vector spaces,
closed infinite dimensional vector spaces, algebras) of functions on
R or C that have certain properties.
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Algebrability of certain classes of functions

The notion of algebrability has its origin in works of Aron,
Pérez-Garcia and Seoane-Sepulveda and the following is a slightly
simplified version of their definition.
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Algebrability of certain classes of functions

The notion of algebrability has its origin in works of Aron,
Pérez-Garcia and Seoane-Sepulveda and the following is a slightly
simplified version of their definition.

Definition (Aron, Pérez-Garcia and Seoane-Sepulveda)

Let £ be an algebra. A set A C L is said to be S-algebrable if
there exists an algebra B so that B C AU {0} and card(Z) = 3,
where (5 is cardinal number and Z is a minimal system of
generators of B. Here, by Z = {z, : @ € A} is a minimal system of
generators of B, we mean that B = A(Z) is the algebra generated
by Z, and for every ag € N, zy, ¢ A(Z\{z4,}). We also say that A
is algebrable if A is [-algebrable for S-infinite.
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Algebrability of certain classes of functions

We study the following classes of functions:
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Algebrability of certain classes of functions

We study the following classes of functions:

@ Perfectly everywhere surjective (PES), strongly everywhere
surjective (SES) and everywhere discontinuous Darboux
(EDD) functions;
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Algebrability of certain classes of functions

We study the following classes of functions:

@ Perfectly everywhere surjective (PES), strongly everywhere
surjective (SES) and everywhere discontinuous Darboux
(EDD) functions;

@ Everywhere discontinuous functions that have finitely many
values (EDF) and everywhere discontinuous compact to
compact functions (£DC);
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Algebrability of certain classes of functions

We study the following classes of functions:

@ Perfectly everywhere surjective (PES), strongly everywhere
surjective (SES) and everywhere discontinuous Darboux
(EDD) functions;

@ Everywhere discontinuous functions that have finitely many
values (EDF) and everywhere discontinuous compact to
compact functions (£DC);

@ Functions that are continuous in fixed closed set C.
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Independent Bernstein sets and general construction

Independent family of sets

Let B be a family of subsets of a set X. We say that the family A
is B-independent iff
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Independent Bernstein sets and general construction

Independent family of sets

Let B be a family of subsets of a set X. We say that the family A
is B-independent iff

Al'N..NAr eB

for any distinct A; € A, any ¢; € {0,1} for i € {1,...,n} and n € N
where A = X\ A and Al = A.
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Independent Bernstein sets and general construction

Independent family of sets

Let B be a family of subsets of a set X. We say that the family A
is B-independent iff

Al'N..NAr eB

for any distinct A; € A, any ¢; € {0,1} for i € {1,...,n} and n € N
where A = X\ A and Al = A.

v

There is an independent family of 2% many subsets of .

Let {B, : @ < ¢} be a decomposition of R into disjoint Bernstein
sets.

Let {N¢ : £ < 2°} be an independent family in ¢ such that for every
& < ...<&,<2%and for any ¢; € {0,1} the set Ng N..N N s
nonempty and has cardinality c.
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Independent Bernstein sets and general construction

Independent family of Bernstein sets of cardinality 2°

For £ < 2° put
B = J Ba.
CMGNg

Then every set B¢ is Bernstein. Note that for every
& < ...<&,<2%and any ¢; € {0,1} the set

(BS1)e1N...N (BS) = U B.,

£1 5
ocE/V§1 ﬂ..,ﬁN§:

is a Bernstein. That means {B¢ : £ < 2°} is the independent
family of Bernstein sets.
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Independent Bernstein sets and general construction

Let for o < ¢, go : B, — C (or R) be a non-zero function. Let us
put
ga(x) ,when x € B, and a € N

fe(x) =
5( ) 0 otherwise.

Then the family {f; : £ < 2°} is linearly independent.
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Independent Bernstein sets and general construction

Remark

Let P be any non-zero polynomial without constant term and
consider the function P(f; ..., f¢ ). Let

PS(X) = P(61 * X5 €n -X),S = (517 ---a5n)

Let us observe here that the function P(f; ,..., f¢ )|g, for any
a€ Ngll N...N N;" is of the form

P(El *8ay -y En goc) = Ps(ga)

Marek Bienias Independent Bernstein sets and algebraic constructions



Independent Bernstein sets and general construction

Then we have two possibilities.
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Independent Bernstein sets and general construction

RENETLS

Then we have two possibilities.

(i) Either at least one of the functions Ps(x) for s € {0,1}" is a
non-zero polynomial of one variable. If Ps is non-zero, where
s = (€1,...,&n), then the function P(f; , ..., fc ) is non-zero on
the Bernstein set of the form

(B&)7 N (B%2)2 ... N (BS)r,
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Independent Bernstein sets and general construction

RENETLS

Then we have two possibilities.

(i) Either at least one of the functions Ps(x) for s € {0,1}" is a
non-zero polynomial of one variable. If Ps is non-zero, where
s = (€1,...,&n), then the function P(f; , ..., fc ) is non-zero on
the Bernstein set of the form

(B&)7 N (B%2)2 ... N (BS)r,

(ii) Or every function of a type Ps(x) is a zero function, and then
P(fe,, ..., f¢,) is zero function.
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Independent Bernstein sets and general construction

RENETLS

Then we have two possibilities.

(i) Either at least one of the functions Ps(x) for s € {0,1}" is a
non-zero polynomial of one variable. If Ps is non-zero, where
s = (€1,...,&n), then the function P(f; , ..., fc ) is non-zero on
the Bernstein set of the form

(B&)7 N (B%2)2 ... N (BS)r,

(ii) Or every function of a type Ps(x) is a zero function, and then
P(fe,, ..., f¢,) is zero function.

Span the algebra by the functions {f; : £ < 2°} and we get an
algebra of 2° many generators.
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Main results and questions

K is R or C. The function f : K — K is called:
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Main results and questions

K is R or C. The function f : K — K is called:

e perfectly everywhere surjective (PES(K)) iff for every perfect
set PC K, f(P)=K;

Marek Bienias Independent Bernstein sets and algebraic constructions



Main results and questions

K is R or C. The function f : K — K is called:

e perfectly everywhere surjective (PES(K)) iff for every perfect
set PC K, f(P)=K;

e strongly everywhere surjective (SES(K)) iff it takes every real
or complex value ¢ times on any interval.
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Main results and questions

K is R or C. The function f : K — K is called:
e perfectly everywhere surjective (PES(K)) iff for every perfect
set PC K, f(P)=K;
e strongly everywhere surjective (SES(K)) iff it takes every real

or complex value ¢ times on any interval.

The real function is an everywhere discontinuous Darboux function
(EDD(R)) iff it is nowhere continuous and maps connected sets to
connected sets.
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Main results and questions

K is R or C. The function f : K — K is called:

e perfectly everywhere surjective (PES(K)) iff for every perfect
set PC K, f(P)=K;

e strongly everywhere surjective (SES(K)) iff it takes every real
or complex value ¢ times on any interval.

The real function is an everywhere discontinuous Darboux function
(EDD(R)) iff it is nowhere continuous and maps connected sets to
connected sets.

Proposition

Let B C K be a Bernstein set. There exist a function f € PES(K)
that is 0 on the set BO.
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.
Then for every a < ¢ cardinality of B, = P, N B is continuum.
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.

Then for every a < ¢ cardinality of B, = P, N B is continuum.
Ennumerate a product {B, : o« < ¢} x {y3 : 8 < c} as

{A, v <c}, where A, = (By, yy).
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.

Then for every a < ¢ cardinality of B, = P, N B is continuum.
Ennumerate a product {B, : o« < ¢} x {y3 : 8 < c} as

{A, v <c}, where A, = (By, yy).

Choose xp € By and put f(xp) = yo.
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.

Then for every a < ¢ cardinality of B, = P, N B is continuum.
Ennumerate a product {B, : o« < ¢} x {y3 : 8 < c} as

{A, v <c}, where A, = (By, yy).

Choose xp € By and put f(xp) = yo.

Assume that for some { < ¢ the points {x;, : 7 < (} were chosen
satisfying x, € B,\{x¢ : £ < ¢} for every n <  with f(x;,) =y, for
every n < (.
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Main results and questions

proof (Sketch)

Let B C K be a Bernstein set and {P, : @ < ¢} an ennumeration
of all perfect sets in K and K = {y3 : 8 < c}.

Then for every a < ¢ cardinality of B, = P, N B is continuum.
Ennumerate a product {B, : o« < ¢} x {y3 : 8 < c} as

{A, v <c}, where A, = (By, yy).

Choose xp € By and put f(xp) = yo.

Assume that for some { < ¢ the points {x;, : 7 < (} were chosen
satisfying x, € B,\{x¢ : £ < ¢} for every n <  with f(x;,) =y, for
every n < (.

Put X = {x, : 7 < (} then |X| < ¢. So there exists a point

x¢c € Be\X and define f(x:) = yc. By putting f(x) = 0 for every
x € K\{x¢ : £ < ¢} we are done.
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Main results and questions

The following theorems hold and the proof is using a family of
independent Berstein sets.
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Main results and questions

The following theorems hold and the proof is using a family of
independent Berstein sets.

The set PES(C) is 2¢-algebrable.
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Main results and questions

The following theorems hold and the proof is using a family of
independent Berstein sets.

The set PES(C) is 2¢-algebrable.

The set SES(C)\PES(C) is 2°-algebrable.
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Main results and questions

The following theorems hold and the proof is using a family of
independent Berstein sets.

The set PES(C) is 2¢-algebrable.

The set SES(C)\PES(C) is 2°-algebrable.

The set EDD(R) is 2°-algebrable.

Marek Bienias Independent Bernstein sets and algebraic constructions



Main results and questions

EDF(R) is the set of all nowhere continuous real functions with
If(R)] < w.

EDC(R) is the set of all nowhere continuous compact-to-compact
functions.
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Main results and questions

EDF(R) is the set of all nowhere continuous real functions with
If(R)] < w.

EDC(R) is the set of all nowhere continuous compact-to-compact
functions.

The set EDF(R) is 2°-algebrable but it is not strongly 1-algebrable.
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Main results and questions

EDF(R) is the set of all nowhere continuous real functions with
If(R)] < w.

EDC(R) is the set of all nowhere continuous compact-to-compact
functions.

The set EDF(R) is 2°-algebrable but it is not strongly 1-algebrable.

The set EDC(R) is 2°-algebrable.
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Main results and questions

Let C C R be a fixed closed subset of R. We consider functions
f : R — R that are continuous only in the points of C.
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Main results and questions

Let C C R be a fixed closed subset of R. We consider functions
f : R — R that are continuous only in the points of C.

The set of all functions f : R — R that are continuous only in the
points of C is 2¢-algebrable.
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Main results and questions

proof (Sketch)

Let [1,2] = {ro : a < ¢} and

g : R — R be such that g(x) = d(x, C). Then g is zero only on
the set C.
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Main results and questions

proof (Sketch)
Let [1,2] = {ro : a < ¢} and
g : R — R be such that g(x) = d(x, C). Then g is zero only on

the set C.
Put go(x) = ro - g(x) and f; as in the general method.
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Main results and questions

proof (Sketch)

Let [1,2] = {ro : a < ¢} and
g : R — R be such that g(x) = d(x, C). Then g is zero only on

the set C.
Put go(x) = ro - g(x) and f; as in the general method.
If each function Ps(x) is zero then P(f,, ..., fc ) is zero function.
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Main results and questions

proof (Sketch)

Let [1,2] = {ro : a < ¢} and
g : R — R be such that g(x) = d(x, C). Then g is zero only on

the set C.
Put go(x) = ro - g(x) and f; as in the general method.
If each function Ps(x) is zero then P(f,, ..., fc ) is zero function.

If Ps,(x) is non-zero for some sy € {0,1}". Then P(fe ..., f¢ ) is
continuous in any point of C and suppose that is continuous in a
point xg ¢ C.
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Main results and questions

proof continued

P(fe,, ..., f¢,) is zero on the Bernstein set

U B,,.

0 0 0
aENglﬂNQﬁ...ﬂNEn
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Main results and questions

proof continued

P(fe,, ..., f¢,) is zero on the Bernstein set

U B,,.

0 0 0
a€NZ NN N...ON?
For every 3 € NE1 N52 N...N Ne" there exist a sequence

(Xn)nen C Bg such that Xp — X0- Hence by the continuity of
polynomial of one variable we get that Py (gs(x0)) = 0 for any
such 6.

Marek Bienias Independent Bernstein sets and algebraic constructions



Main results and questions

proof continued

P(fe,, ..., f¢,) is zero on the Bernstein set

U B,,.

aeNg mN§2r1 NN
For every 3 € N51 N N52 N...N Ne" there exist a sequence
(Xn)nen C Bg such that Xp — X0- Hence by the continuity of
polynomial of one variable we get that Py (gs(x0)) = 0 for any
such 6.
Since for a # (8 we have that
8a(x0) = ra - 8(x0) # 3 - 8(x0) = 83(x0) s0 Ps,(8s(x0)) as a
polynomial of one variable 3, that has infinitely many zeros, is zero
function - contradiction.
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Main results and questions

Is the set PES(C) strongly 2°¢-algebrable? (answered 3 days ago)
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Main results and questions

Is the set PES(C) strongly 2°¢-algebrable? (answered 3 days ago)

Is there a function f € EDC(R) that has infinitely many values on
each interval?
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Main results and questions

Is the set PES(C) strongly 2°¢-algebrable? (answered 3 days ago)

Is there a function f € EDC(R) that has infinitely many values on
each interval?

Is the set EDC(R) strongly 1-algebrable (strongly c-algebrable,
strongly 2¢-algebrable)?
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Main results and questions

Is the set PES(C) strongly 2°¢-algebrable? (answered 3 days ago)

Is there a function f € EDC(R) that has infinitely many values on
each interval?

Is the set EDC(R) strongly 1-algebrable (strongly c-algebrable,
strongly 2¢-algebrable)?
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