Network character and filter convergence in $\beta\omega$

Taras Banakh, V.Mykhaylyuk, L.Zdomskyy

Winter School, 2011

<u>Taras Banakh</u>, V.Mykhaylyuk, L.Zdomskyy Network character and filter convergence in $\beta\omega$

A family \mathcal{F} of non-empty subsets of ω is a *filter* if \mathcal{F} is closed under intersections and taking supersets.

A filter \mathcal{F} is *free* if $\cap \mathcal{F} = \emptyset$.

For a filter \mathcal{F} on ω let $\mathcal{F}^+ = \{A \subset \omega : \forall F \in \mathcal{F} \ A \cap F \neq \emptyset\}.$

Basic Example

The Fréchet filter $\mathfrak{F}r = \{\omega \setminus F : F \text{ is finite}\}$ of cofinite subsets.

 $\mathfrak{F}r^+ = [\omega]^{\omega}$ is the family of all infinite subsets of ω .

(人間) ト く ヨ ト く ヨ ト

3

A family \mathcal{F} of non-empty subsets of ω is a *filter* if \mathcal{F} is closed under intersections and taking supersets.

A filter \mathcal{F} is *free* if $\cap \mathcal{F} = \emptyset$.

For a filter \mathcal{F} on ω let $\mathcal{F}^+ = \{A \subset \omega : \forall F \in \mathcal{F} \ A \cap F \neq \emptyset\}.$

Basic Example The Fréchet filter $\Im r = \{\omega \setminus F : F \text{ is finite}\}$ of cof

 $\mathfrak{F}r^+ = [\omega]^{\omega}$ is the family of all infinite subsets of ω .

A family \mathcal{F} of non-empty subsets of ω is a *filter* if \mathcal{F} is closed under intersections and taking supersets.

A filter \mathcal{F} is *free* if $\cap \mathcal{F} = \emptyset$.

For a filter \mathcal{F} on ω let $\mathcal{F}^+ = \{A \subset \omega : \forall F \in \mathcal{F} \ A \cap F \neq \emptyset\}.$

Basic Example

The Fréchet filter $\mathfrak{F}r = \{\omega \setminus F : F \text{ is finite}\}$ of cofinite subsets.

 $\mathfrak{F}r^+ = [\omega]^{\omega}$ is the family of all infinite subsets of ω .

A family \mathcal{F} of non-empty subsets of ω is a *filter* if \mathcal{F} is closed under intersections and taking supersets.

A filter \mathcal{F} is *free* if $\cap \mathcal{F} = \emptyset$.

For a filter \mathcal{F} on ω let $\mathcal{F}^+ = \{A \subset \omega : \forall F \in \mathcal{F} \ A \cap F \neq \emptyset\}.$

Basic Example

The Fréchet filter $\mathfrak{F}r = \{\omega \setminus F : F \text{ is finite}\}$ of cofinite subsets.

 $\mathfrak{F}r^+ = [\omega]^{\omega}$ is the family of all infinite subsets of ω .

.

A family \mathcal{F} of non-empty subsets of ω is a *filter* if \mathcal{F} is closed under intersections and taking supersets.

A filter \mathcal{F} is *free* if $\cap \mathcal{F} = \emptyset$.

For a filter \mathcal{F} on ω let $\mathcal{F}^+ = \{A \subset \omega : \forall F \in \mathcal{F} \ A \cap F \neq \emptyset\}.$

Basic Example

The Fréchet filter $\mathfrak{F}r = \{\omega \setminus F : F \text{ is finite}\}$ of cofinite subsets.

 $\mathfrak{F}r^+ = [\omega]^{\omega}$ is the family of all infinite subsets of ω .

Let \mathcal{F} be a free filter on ω .

Definition

A sequence $(x_n)_{n \in \omega}$ in a topological space $X \quad \mathcal{F}$ -converges to a point $x_{\infty} \in X$ if $\forall O(x_{\infty}) \exists F \in \mathcal{F} \forall n \in F \quad x_n \in O(x_{\infty})$.

Remark

A sequence $\mathfrak{F}r$ -converges iff it converges in the standard sense.

Let \mathcal{F} be a free filter on ω .

Definition

A sequence $(x_n)_{n \in \omega}$ in a topological space X \mathcal{F} -converges to a point $x_{\infty} \in X$ if $\forall O(x_{\infty}) \exists F \in \mathcal{F} \forall n \in F \ x_n \in O(x_{\infty})$.

Remark

A sequence $\mathfrak{F}r$ -converges iff it converges in the standard sense.

Two Motivating Facts:

1. Any sequence in a compact Hausdorff space is $\mathcal U\text{-}convergent$ for any ultrafilter $\mathcal U.$

2. No injective sequence in $\beta \omega$ is $\mathfrak{F}r$ -convergent for the Fréchet filter $\mathfrak{F}r$.

Problem

Which property of the Fréchet filter $\mathfrak{F}r$ is responsible for such a phenomenon?

The same in other words:

Problem

What can be said about filters \mathcal{F} admitting an injective \mathcal{F} -convergent sequence in $\beta \omega$?

Two Motivating Facts:

1. Any sequence in a compact Hausdorff space is $\mathcal U\text{-}convergent$ for any ultrafilter $\mathcal U.$

2. No injective sequence in $\beta \omega$ is $\mathfrak{F}r$ -convergent for the Fréchet filter $\mathfrak{F}r$.

Problem

Which property of the Fréchet filter $\mathfrak{F}r$ is responsible for such a phenomenon?

The same in other words:

Problem

What can be said about filters \mathcal{F} admitting an injective \mathcal{F} -convergent sequence in $\beta \omega$?

Two Motivating Facts:

1. Any sequence in a compact Hausdorff space is $\mathcal U\text{-}convergent$ for any ultrafilter $\mathcal U.$

2. No injective sequence in $\beta \omega$ is $\mathfrak{F}r$ -convergent for the Fréchet filter $\mathfrak{F}r$.

Problem

Which property of the Fréchet filter $\mathfrak{F}r$ is responsible for such a phenomenon?

The same in other words:

Problem

What can be said about filters \mathcal{F} admitting an injective \mathcal{F} -convergent sequence in $\beta \omega$?

Two Motivating Facts:

1. Any sequence in a compact Hausdorff space is $\mathcal U\text{-}convergent$ for any ultrafilter $\mathcal U.$

2. No injective sequence in $\beta \omega$ is $\mathfrak{F}r$ -convergent for the Fréchet filter $\mathfrak{F}r$.

Problem

Which property of the Fréchet filter $\mathfrak{F}r$ is responsible for such a phenomenon?

The same in other words:

Problem

What can be said about filters \mathcal{F} admitting an injective \mathcal{F} -convergent sequence in $\beta \omega$?

Each filter \mathcal{F} on ω is a subset of the power-set $\mathcal{P}(\omega) = 2^{\omega}$, which carries a nice compact metrizable topology.

So, we can speak about topological properties of filters considered as subsets of the Cantor cube $\mathcal{P}(\omega) = 2^{\omega}$.

Definition

A filter \mathcal{F} on ω is called *meager* (*analytic*, F_{σ}) if \mathcal{F} is meager (analytic, F_{σ}) subset of 2^{ω} .

$$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow \mathsf{analytic} \Rightarrow \mathsf{meager}$$

Each filter \mathcal{F} on ω is a subset of the power-set $\mathcal{P}(\omega) = 2^{\omega}$, which carries a nice compact metrizable topology. So, we can speak about topological properties of filters considered as subsets of the Cantor cube $\mathcal{P}(\omega) = 2^{\omega}$.

Definition

A filter \mathcal{F} on ω is called *meager* (*analytic*, F_{σ}) if \mathcal{F} is meager (analytic, F_{σ}) subset of 2^{ω} .

$$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow$$
 analytic \Rightarrow meager

Each filter \mathcal{F} on ω is a subset of the power-set $\mathcal{P}(\omega) = 2^{\omega}$, which carries a nice compact metrizable topology. So, we can speak about topological properties of filters considered as subsets of the Cantor cube $\mathcal{P}(\omega) = 2^{\omega}$.

Definition

A filter \mathcal{F} on ω is called *meager* (*analytic*, F_{σ}) if \mathcal{F} is meager (analytic, F_{σ}) subset of 2^{ω} .

$$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow \mathsf{analytic} \Rightarrow \mathsf{meager}$$

Each filter \mathcal{F} on ω is a subset of the power-set $\mathcal{P}(\omega) = 2^{\omega}$, which carries a nice compact metrizable topology. So, we can speak about topological properties of filters considered as subsets of the Cantor cube $\mathcal{P}(\omega) = 2^{\omega}$.

Definition

A filter \mathcal{F} on ω is called *meager* (*analytic*, F_{σ}) if \mathcal{F} is meager (analytic, F_{σ}) subset of 2^{ω} .

$$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow \mathsf{analytic} \Rightarrow \mathsf{meager}$$

```
Definition
```

A filter \mathcal{F} on ω is

- measurable if it is measurable with respect to the Haar measure;
- *null* if it has Haar measure null.

It is well-known that a filter is measurable if and only if it is null.

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow \mathsf{analytic} \Rightarrow \mathsf{meager} \& \mathsf{null}$

Definition

- A filter ${\mathcal F}$ on ω is
 - measurable if it is measurable with respect to the Haar measure;
 - *null* if it has Haar measure null.

It is well-known that a filter is measurable if and only if it is null.

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow$ analytic \Rightarrow meager & null

Definition

- A filter ${\mathcal F}$ on ω is
 - measurable if it is measurable with respect to the Haar measure;
 - *null* if it has Haar measure null.

It is well-known that a filter is measurable if and only if it is null.

$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow$ analytic \Rightarrow meager & null

Definition

- A filter ${\mathcal F}$ on ω is
 - measurable if it is measurable with respect to the Haar measure;
 - *null* if it has Haar measure null.

It is well-known that a filter is measurable if and only if it is null.

$$\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow \mathsf{analytic} \Rightarrow \mathsf{meager} \& \mathsf{null}$$

Combinatorial properties of filters

A set A is called a *pseudointersection* of a family of sets \mathcal{F} if for every $F \in \mathcal{F}$ $A \subset^* F$ (which means that $A \setminus F$ is finite).

Definition

A filter \mathcal{F} on ω is called a *P*-filter (a *P*⁺-filter) if each countable subfamily $\mathcal{C} \subset \mathcal{F}$ has a pseudointersection *A* in \mathcal{F} (in \mathcal{F}^+).

The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the smallest cardinality of a base of \mathcal{F} .

The smallest character of a free ultrafilter is denoted by \mathfrak{u} .

Theorem (Ketonen)

Any filter \mathcal{F} of character $\chi(\mathcal{F}) < \mathfrak{d}$ is a P^+ -filter.

Definition

A filter \mathcal{F} on ω is called a *P*-filter (a *P*⁺-filter) if each countable subfamily $\mathcal{C} \subset \mathcal{F}$ has a pseudointersection A in \mathcal{F} (in \mathcal{F}^+).

The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the smallest cardinality of a base of \mathcal{F} .

The smallest character of a free ultrafilter is denoted by \mathfrak{u} .

Theorem (Ketonen)

Any filter \mathcal{F} of character $\chi(\mathcal{F}) < \mathfrak{d}$ is a P^+ -filter.

Definition

A filter \mathcal{F} on ω is called a *P*-filter (a *P*⁺-filter) if each countable subfamily $\mathcal{C} \subset \mathcal{F}$ has a pseudointersection A in \mathcal{F} (in \mathcal{F}^+).

The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the smallest cardinality of a base of \mathcal{F} .

The smallest character of a free ultrafilter is denoted by \mathfrak{u} .

Theorem (Ketonen)

Any filter \mathcal{F} of character $\chi(\mathcal{F}) < \mathfrak{d}$ is a P^+ -filter.

Definition

A filter \mathcal{F} on ω is called a *P*-filter (a *P*⁺-filter) if each countable subfamily $\mathcal{C} \subset \mathcal{F}$ has a pseudointersection A in \mathcal{F} (in \mathcal{F}^+).

The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the smallest cardinality of a base of \mathcal{F} .

The smallest character of a free ultrafilter is denoted by \mathfrak{u} .

Theorem (Ketonen)

Any filter \mathcal{F} of character $\chi(\mathcal{F}) < \mathfrak{d}$ is a P^+ -filter.

通 ト イ ヨ ト イ ヨ ト

Definition

A filter \mathcal{F} on ω is called a *P*-filter (a *P*⁺-filter) if each countable subfamily $\mathcal{C} \subset \mathcal{F}$ has a pseudointersection A in \mathcal{F} (in \mathcal{F}^+).

The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the smallest cardinality of a base of \mathcal{F} .

The smallest character of a free ultrafilter is denoted by \mathfrak{u} .

Theorem (Ketonen)

Any filter \mathcal{F} of character $\chi(\mathcal{F}) < \mathfrak{d}$ is a P^+ -filter.

• • = • • = •

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Corollary

For any separable subspace $X \subset \beta \omega$ and any non-isolated point $x \in X$ we have $\chi(x, X) \ge \min\{\mathfrak{d}, \mathfrak{u}\}.$

Problem

Let X be a (separable) subspace of $\beta \omega$ and $x \in X$. Is $\chi(x, X) \ge \mathfrak{u}$?

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Corollary

For any separable subspace $X \subset \beta \omega$ and any non-isolated point $x \in X$ we have $\chi(x, X) \ge \min\{\mathfrak{d}, \mathfrak{u}\}.$

Problem

Let X be a (separable) subspace of $\beta \omega$ and $x \in X$. Is $\chi(x, X) \ge \mathfrak{u}$?

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Corollary

For any separable subspace $X \subset \beta \omega$ and any non-isolated point $x \in X$ we have $\chi(x, X) \ge \min\{\mathfrak{d}, \mathfrak{u}\}.$

Problem

Let X be a (separable) subspace of $\beta \omega$ and $x \in X$. Is $\chi(x, X) \ge \mathfrak{u}$?

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter.

This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$.

If ${\mathcal F}$ is an analytic P^+ -filter, then ${\mathcal F}|A$ is analytic and cannot be an ultrafilter.

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter. This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$.

If ${\mathcal F}$ is an analytic P^+ -filter, then ${\mathcal F}|A$ is analytic and cannot be an ultrafilter.

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter. This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$.

If ${\mathcal F}$ is an analytic P^+ -filter, then ${\mathcal F}|A$ is analytic and cannot be an ultrafilter.

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter. This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$.

If ${\mathcal F}$ is an analytic P^+ -filter, then ${\mathcal F}|A$ is analytic and cannot be an ultrafilter.

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter. This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$. \Box

If \mathcal{F} is an analytic P^+ -filter, then $\mathcal{F}|A$ is analytic and cannot be an ultrafilter.

If a free filter \mathcal{F} admits an injective \mathcal{F} -convergent sequence (x_n) in $\beta\omega$, then $\chi(\mathcal{F}) \geq \min\{\mathfrak{u}, \mathfrak{d}\}.$

Proof.

If $\chi(\mathcal{F}) < \min\{\mathfrak{d},\mathfrak{u}\}$, then $\chi(\mathcal{F}) < \mathfrak{d}$ and by Ketonen's Theorem, \mathcal{F} is a P^+ -filter. This implies the existence of a subset $A \in \mathcal{F}^+$ such that the subsequence $\{x_n\}_{n \in A}$ is discrete. This subsequence is $\mathcal{F}|A$ -convergent for the filter $\mathcal{F}|A = \{F \cap A : F \in \mathcal{F}\}$ which is an ultrafilter as $\{x_n\}_{n \in A}$ is discrete. Then $\mathfrak{u} \leq \chi(\mathcal{F}|A) \leq \chi(\mathcal{F})$. \Box

If \mathcal{F} is an analytic P^+ -filter, then $\mathcal{F}|A$ is analytic and cannot be an ultrafilter.

Verner's Theorem and a related Open Problem

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow analytic \ P^+ \Rightarrow analytic \Rightarrow meager \& null$

Theorem (J.Verner, 2011)

A free filter $\mathcal F$ admitting an injective $\mathcal F$ -convergent sequence in $\beta\omega$

- is not an analytic P⁺-filter;
- is not an F_σ-filter.

Problem

Does $\beta\omega$ contain an injective \mathcal{F} -convergent sequence for

- an analytic filter F?
 (This is open but we believe that the answer is No!?);
- a meager and null filter *F*? (Here we have a surprising answer: Yes!)

Verner's Theorem and a related Open Problem

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow analytic \ P^+ \Rightarrow analytic \Rightarrow meager \& null$

Theorem (J.Verner, 2011)

A free filter $\mathcal F$ admitting an injective $\mathcal F$ -convergent sequence in $\beta\omega$

- is not an analytic P⁺-filter;
- is not an F_σ-filter.

Problem

Does $\beta \omega$ contain an injective \mathcal{F} -convergent sequence for

- an analytic filter *F*? (This is open but we believe that the answer is No!?);
- a meager and null filter *F*? (Here we have a surprising answer: Yes!

Verner's Theorem and a related Open Problem

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow analytic \ P^+ \Rightarrow analytic \Rightarrow meager \& null$

Theorem (J.Verner, 2011)

A free filter $\mathcal F$ admitting an injective $\mathcal F$ -convergent sequence in $\beta\omega$

- is not an analytic P⁺-filter;
- is not an F_σ-filter.

Problem

Does $\beta \omega$ contain an injective \mathcal{F} -convergent sequence for

- an analytic filter *F*? (This is open but we believe that the answer is No!?);
- a meager and null filter *F*?

(Here we have a surprising answer: Yes!)

Verner's Theorem and a related Open Problem

 $\mathfrak{F}r \Rightarrow F_{\sigma} \Rightarrow analytic \ P^+ \Rightarrow analytic \Rightarrow meager \& null$

Theorem (J.Verner, 2011)

A free filter $\mathcal F$ admitting an injective $\mathcal F$ -convergent sequence in $\beta\omega$

- is not an analytic P⁺-filter;
- is not an F_σ-filter.

Problem

Does $\beta \omega$ contain an injective \mathcal{F} -convergent sequence for

- an analytic filter *F*? (This is open but we believe that the answer is No!?);
- a meager and null filter *F*? (Here we have a surprising answer: Yes!)

Each infinite compact Hausdorff space X contains an injective \mathcal{F} -convergent sequence for some filter \mathcal{F} , which is meager and null.

Talagrand's Characterization of meager filters

A function $\varphi : \omega \to \omega$ is *finite-to-one* if for every $y \in \omega$ the preimage $\varphi^{-1}(y)$ is finite and non-empty.

Theorem (Talagrand, 1980)

A filter \mathcal{F} on ω is meager if and only if $\varphi(\mathcal{F}) = \mathfrak{F}r$ for some finite-to-one function $\varphi : \omega \to \omega$. In this case we shall say that \mathcal{F} is φ -meager.

Easy Observation: If $\varphi: \omega \to \omega$ is a finite-to-one function with

$$\sum_{n\in\omega}2^{-|\varphi^{-1}(n)|}=\infty,$$

then each φ -meager filter is meager and null.

A function $\varphi : \omega \to \omega$ is *finite-to-one* if for every $y \in \omega$ the preimage $\varphi^{-1}(y)$ is finite and non-empty.

Theorem (Talagrand, 1980)

A filter \mathcal{F} on ω is meager if and only if $\varphi(\mathcal{F}) = \mathfrak{F}r$ for some finite-to-one function $\varphi : \omega \to \omega$. In this case we shall say that \mathcal{F} is φ -meager.

Easy Observation: If $\varphi: \omega \to \omega$ is a finite-to-one function with

$$\sum_{n\in\omega}2^{-|\varphi^{-1}(n)|}=\infty,$$

then each φ -meager filter is meager and null.

A function $\varphi : \omega \to \omega$ is *finite-to-one* if for every $y \in \omega$ the preimage $\varphi^{-1}(y)$ is finite and non-empty.

Theorem (Talagrand, 1980)

A filter \mathcal{F} on ω is meager if and only if $\varphi(\mathcal{F}) = \mathfrak{F}r$ for some finite-to-one function $\varphi : \omega \to \omega$. In this case we shall say that \mathcal{F} is φ -meager.

Easy Observation: If $\varphi:\omega\to\omega$ is a finite-to-one function with

$$\sum_{n\in\omega}2^{-|\varphi^{-1}(n)|}=\infty,$$

then each φ -meager filter is meager and null.

A family \mathcal{N} of subset of a topological space X is a *network at a point* $x \in X$ if each neighborhood O(x) contains some set $N \in \mathcal{N}$. If each set $N \in \mathcal{N}$ in open in X, then \mathcal{N} is called a π -base at x.

Definition

The *network character* $nw_{\chi}(x, X)$ of X at a non-isolated point x is the smallest cardinality $|\mathcal{N}|$ of a network \mathcal{N} at x that consists of infinite subsets of X. For an isolated point $x \in X$ we put $nw_{\chi}(x, X) = 1$.

Easy Observations: 1) $nw_{\chi}(x, X) \leq \chi(x, X)$. 2) If X has no isolated points, then $nw_{\chi}(x, X) \leq \pi\chi(x, X)$. Here the π -character $\pi\chi(x, X)$ is equal to the smallest cardinality of a π -base at x.

A family \mathcal{N} of subset of a topological space X is a *network at a point* $x \in X$ if each neighborhood O(x) contains some set $N \in \mathcal{N}$. If each set $N \in \mathcal{N}$ in open in X, then \mathcal{N} is called a π -base at x.

Definition

The *network character* $nw_{\chi}(x, X)$ of X at a non-isolated point x is the smallest cardinality $|\mathcal{N}|$ of a network \mathcal{N} at x that consists of infinite subsets of X. For an isolated point $x \in X$ we put $nw_{\chi}(x, X) = 1$.

Easy Observations: 1) $nw_{\chi}(x, X) \leq \chi(x, X)$. 2) If X has no isolated points, then $nw_{\chi}(x, X) \leq \pi\chi(x, X)$. Here the π -character $\pi\chi(x, X)$ is equal to the smallest cardinality of a π -base at x.

A family \mathcal{N} of subset of a topological space X is a *network at a point* $x \in X$ if each neighborhood O(x) contains some set $N \in \mathcal{N}$. If each set $N \in \mathcal{N}$ in open in X, then \mathcal{N} is called a π -base at x.

Definition

The *network character* $nw_{\chi}(x, X)$ of X at a non-isolated point x is the smallest cardinality $|\mathcal{N}|$ of a network \mathcal{N} at x that consists of infinite subsets of X. For an isolated point $x \in X$ we put $nw_{\chi}(x, X) = 1$.

Easy Observations: 1) $nw_{\chi}(x, X) \leq \chi(x, X)$. 2) If X has no isolated points, then $nw_{\chi}(x, X) \leq \pi \chi(x, X)$. Here the π -character $\pi \chi(x, X)$ is equal to the smallest cardinality of a π -base at x.

A family \mathcal{N} of subset of a topological space X is a *network at a point* $x \in X$ if each neighborhood O(x) contains some set $N \in \mathcal{N}$. If each set $N \in \mathcal{N}$ in open in X, then \mathcal{N} is called a π -base at x.

Definition

The *network character* $nw_{\chi}(x, X)$ of X at a non-isolated point x is the smallest cardinality $|\mathcal{N}|$ of a network \mathcal{N} at x that consists of infinite subsets of X. For an isolated point $x \in X$ we put $nw_{\chi}(x, X) = 1$.

Easy Observations: 1) $\operatorname{nw}_{\chi}(x, X) \leq \chi(x, X)$. 2) If X has no isolated points, then $\operatorname{nw}_{\chi}(x, X) \leq \pi \chi(x, X)$. Here the π -character $\pi \chi(x, X)$ is equal to the smallest cardinality of a π -base at x.

A family \mathcal{N} of subset of a topological space X is a *network at a point* $x \in X$ if each neighborhood O(x) contains some set $N \in \mathcal{N}$. If each set $N \in \mathcal{N}$ in open in X, then \mathcal{N} is called a π -base at x.

Definition

The *network character* $nw_{\chi}(x, X)$ of X at a non-isolated point x is the smallest cardinality $|\mathcal{N}|$ of a network \mathcal{N} at x that consists of infinite subsets of X. For an isolated point $x \in X$ we put $nw_{\chi}(x, X) = 1$.

Easy Observations: 1) $nw_{\chi}(x, X) \leq \chi(x, X)$. 2) If X has no isolated points, then $nw_{\chi}(x, X) \leq \pi\chi(x, X)$. Here the π -character $\pi\chi(x, X)$ is equal to the smallest cardinality of a π -base at x.

Network character of points in $\beta\omega$

It is well-known that $\omega^* = \beta \omega \setminus \omega$ has

- uncountable character $\chi(x, \beta \omega) \ge \mathfrak{u}$ and
- uncountable π -character $\pi \chi(x, \omega^*) \geq \mathfrak{r}$

at each point x.

Problem

Is network character $nw_{\chi}(x, \beta\omega) \geq \aleph_1$ for all points $x \in \omega^*$?

Network character of points in $\beta\omega$

It is well-known that $\omega^* = \beta \omega \setminus \omega$ has

- uncountable character $\chi(x, \beta \omega) \geq \mathfrak{u}$ and
- uncountable π -character $\pi \chi(x, \omega^*) \geq \mathfrak{r}$

at each point x.

Problem

Is network character $nw_{\chi}(x, \beta\omega) \ge \aleph_1$ for all points $x \in \omega^*$?

Surprising Answer: No!

Network character of points in $\beta\omega$

It is well-known that $\omega^* = \beta \omega \setminus \omega$ has

- uncountable character $\chi(x, \beta \omega) \geq \mathfrak{u}$ and
- uncountable π -character $\pi\chi(x,\omega^*) \geq \mathfrak{r}$

at each point x.

Problem

Is network character $nw_{\chi}(x, \beta\omega) \geq \aleph_1$ for all points $x \in \omega^*$?

Surprising Answer: No!

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $\operatorname{nw}_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$. If X is not scattered, then X admits a surjective continuous map $f: X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any proper subset $B \subset A$. The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $nw_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$.

If X is not scattered, then X admits a surjective continuous map $f : X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any proper subset $B \subset A$.

The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $\operatorname{nw}_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$. If X is not scattered, then X admits a surjective continuous map $f: X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any proper subset $B \subset A$. The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $\operatorname{nw}_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$. If X is not scattered, then X admits a surjective continuous map $f: X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any

proper subset $B \subset A$.

The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $\operatorname{nw}_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$. If X is not scattered, then X admits a surjective continuous map $f: X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any proper subset $B \subset A$. The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

Theorem

Each infinite compact Hausdorff space X contains a point $x \in X$ with $nw_{\chi}(x, X) = \aleph_0$.

Proof.

If X is scattered, then X contains an injective convergent sequence (x_n) and hence $nw_{\chi}(x, X) = \aleph_0$ for $x = \lim_{n \to \infty} x_n$. If X is not scattered, then X admits a surjective continuous map $f : X \to \mathbb{I}$ onto $\mathbb{I} = [0, 1]$. Choose a closed subset $A \subset X$ such that f|A is irreducible in the sense that $f(A) = \mathbb{I}$ but $f(B) \neq \mathbb{I}$ for any proper subset $B \subset A$. The irreducibility of f|A implies that A has no isolated points and for any $x \in A$ we get

If $nw_{\chi}(x, X) = \aleph_0$ for some point x, then some injective sequence in X is \mathcal{F} -convergent to x for some meager and null filter \mathcal{F} .

Proof.

Let $\{N_k : k \in \omega\}$ be a countable network at x that consists of infinite subsets of X. Fix any finite-to-one function $\varphi : \omega \to \omega$ such that $\lim_{n\to\infty} |\varphi^{-1}(n)| = \infty$ and $\sum_{n\in\omega} 2^{-|\varphi^{-1}(n)|} = \infty$. By induction choose an injective sequence $(x_n)_{n\in\omega}$ such that for every $n \in \omega$ the set $\{x_k\}_{k\in\varphi^{-1}(n)}$ intersects each set N_i with $i < |\varphi^{-1}(n)|$. Then the sequence $(x_n) \mathcal{F}$ -converges to x for the filter

$$\mathcal{F} = \{ \{ n \in \omega : x_n \in O(x) \} : O(x) \text{ is a neighborhood of } x \text{ in } X \}$$

which is φ -meager and hence is meager and null

< A >

If $nw_{\chi}(x, X) = \aleph_0$ for some point x, then some injective sequence in X is \mathcal{F} -convergent to x for some meager and null filter \mathcal{F} .

Proof.

Let $\{N_k : k \in \omega\}$ be a countable network at x that consists of infinite subsets of X.

Fix any finite-to-one function $\varphi: \omega \to \omega$ such that $\lim_{n\to\infty} |\varphi^{-1}(n)| = \infty$ and $\sum_{n\in\omega} 2^{-|\varphi^{-1}(n)|} = \infty$. By induction choose an injective sequence $(x_n)_{n\in\omega}$ such that for every $n \in \omega$ the set $\{x_k\}_{k\in\varphi^{-1}(n)}$ intersects each set N_i with $i < |\varphi^{-1}(n)|$. Then the sequence $(x_n) \mathcal{F}$ -converges to x for the filter

 $\mathcal{F} = \big\{ \{ n \in \omega : x_n \in O(x) \} : O(x) \text{ is a neighborhood of } x \text{ in } X \big\}$

which is φ -meager and hence is meager and null.

Image: A matrix

If $nw_{\chi}(x, X) = \aleph_0$ for some point x, then some injective sequence in X is \mathcal{F} -convergent to x for some meager and null filter \mathcal{F} .

Proof.

Let $\{N_k : k \in \omega\}$ be a countable network at x that consists of infinite subsets of X. Fix any finite-to-one function $\varphi : \omega \to \omega$ such that $\lim_{n\to\infty} |\varphi^{-1}(n)| = \infty$ and $\sum_{n\in\omega} 2^{-|\varphi^{-1}(n)|} = \infty$. By induction choose an injective sequence $(x_n)_{n\in\omega}$ such that for every $n \in \omega$ the set $\{x_k\}_{k\in\varphi^{-1}(n)}$ intersects each set N_i with $i < |\varphi^{-1}(n)|$. Then the sequence $(x_n) \mathcal{F}$ -converges to x for the filter

 $\mathcal{F} = \big\{ \{ n \in \omega : x_n \in O(x) \} : O(x) \text{ is a neighborhood of } x \text{ in } X \big\}$

which is arphi-meager and hence is meager and null.

・ ロ ト ・ 一司 ト ・ 三 ト ・

If $nw_{\chi}(x, X) = \aleph_0$ for some point x, then some injective sequence in X is \mathcal{F} -convergent to x for some meager and null filter \mathcal{F} .

Proof.

Let $\{N_k : k \in \omega\}$ be a countable network at x that consists of infinite subsets of X. Fix any finite-to-one function $\varphi : \omega \to \omega$ such that $\lim_{n\to\infty} |\varphi^{-1}(n)| = \infty$ and $\sum_{n\in\omega} 2^{-|\varphi^{-1}(n)|} = \infty$. By induction choose an injective sequence $(x_n)_{n\in\omega}$ such that for every $n \in \omega$ the set $\{x_k\}_{k\in\varphi^{-1}(n)}$ intersects each set N_i with $i < |\varphi^{-1}(n)|$. Then the sequence $(x_n) \mathcal{F}$ -converges to x for the filter

 $\mathcal{F} = \big\{ \{ n \in \omega : x_n \in O(x) \} : O(x) \text{ is a neighborhood of } x \text{ in } X \big\}$

which is arphi-meager and hence is meager and null.

• □ ▶ • □ ▶ • □ ▶ •

If $nw_{\chi}(x, X) = \aleph_0$ for some point x, then some injective sequence in X is \mathcal{F} -convergent to x for some meager and null filter \mathcal{F} .

Proof.

Let $\{N_k : k \in \omega\}$ be a countable network at x that consists of infinite subsets of X. Fix any finite-to-one function $\varphi : \omega \to \omega$ such that $\lim_{n\to\infty} |\varphi^{-1}(n)| = \infty$ and $\sum_{n\in\omega} 2^{-|\varphi^{-1}(n)|} = \infty$. By induction choose an injective sequence $(x_n)_{n\in\omega}$ such that for every $n \in \omega$ the set $\{x_k\}_{k\in\varphi^{-1}(n)}$ intersects each set N_i with $i < |\varphi^{-1}(n)|$. Then the sequence $(x_n) \mathcal{F}$ -converges to x for the filter

$$\mathcal{F} = \big\{ \{ n \in \omega : x_n \in O(x) \} : O(x) \text{ is a neighborhood of } x \text{ in } X \big\}$$

which is φ -meager and hence is meager and null.

Corollary

The space $\beta \omega$ contains:

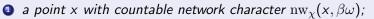
- a point x with countable network character $nw_{\chi}(x,\beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

Corollary

The space $\beta \omega$ contains:



an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

Corollary

The space $\beta \omega$ contains:

- **(**) a point x with countable network character $nw_{\chi}(x, \beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

Corollary

The space $\beta \omega$ contains:

- **(**) a point x with countable network character $nw_{\chi}(x, \beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

Corollary

The space $\beta \omega$ contains:

- **(**) a point x with countable network character $nw_{\chi}(x, \beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

This set is dense and hence not meager in ω^* .

It contains no weak P-point and hence has empty interior. What else?

Corollary

The space $\beta \omega$ contains:

- **(**) a point x with countable network character $nw_{\chi}(x, \beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

Corollary

The space $\beta \omega$ contains:

- **(**) a point x with countable network character $nw_{\chi}(x, \beta\omega)$;
- an injective *F*-convergent sequence for a meager and null filter *F*.

Problem

Study the properties of the set of points with countable network character in $\omega^* = \beta \omega \setminus \omega$.

For topological spaces X, Y let $C_p(X, Y) \subset Y^X$ be the space of continuous function from X to Y endowed with the topology of pointwise convergence.

Theorem

If for some meager filter \mathcal{F} a topological space X contains an injective \mathcal{F} -convergent sequence, then for each Tychonov path-connected space Y with |Y| > 1 the function space $C_p(X, Y)$ is meager.

For topological spaces X, Y let $C_p(X, Y) \subset Y^X$ be the space of continuous function from X to Y endowed with the topology of pointwise convergence.

Theorem

If for some meager filter \mathcal{F} a topological space X contains an injective \mathcal{F} -convergent sequence, then for each Tychonov path-connected space Y with |Y| > 1 the function space $C_p(X, Y)$ is meager.

T.Banakh, V.Mykhaylyuk, L.Zdomskyy, On meager function spaces, network character and meager convergence in topological spaces, preprint (http://arxiv.org/abs/1012.2522).

Thank you!

æ

- ● ● ●