
BOREL COMBINATORICS AND COMPLEXITY

ZOLTÁN VIDNYÁNSZKY

These are notes of the Winter School 2024 lectures.

1. Introduction to Borel Combinatorics

The most straightforward generalizations of finite combinatorial objects often
have counter-intuitive behavior: for example, the Banach-Tarski paradox relies
on the existence of a perfect matching in the appropriate graph. To eliminate this
kind of behavior, one can investigate instead definable (i.e., Borel/measurable/Baire
measurable) generalizations of combinatorial objects. This is the main idea behind
the field of Borel combinatorics.

A graph G on a set X, is a symmetric subset of X2. In this case X = V (G)
is called the vertex set and G is called the edge set. We will call x and y adja-
cent/connected/neighbors if (x, y) ∈ G.

If G is a graph, the chromatic number of G, χ(G) is the minimal n, such that G
admits an n-coloring, that is a map c : V (G)→ n with

∀x, y ∈ V (G) ((x, y) ∈ G =⇒ c(x) 6= c(y)).

Definition 1.1. Assume that V (G) is a Borel space, we define the Borel chromatic
number of G, χB(G) to be the minimal n ∈ {1, 2, . . . ,ℵ0}, such that G admits an
Borel n-coloring, that is a Borel map c : V (G)→ n with

∀x, y ∈ V (G) ((x, y) ∈ G =⇒ c(x) 6= c(y)),

here n is endowed with the trivial Polish structure.1

If G is a graph, a set S ⊆ V (G) is G-independent, if it contains no edges, or
formally, if S2 ∩G = ∅. It is straightforward to see the following.

Claim 1.2. χB(G) ≤ n iff V (G) can be covered with n-many G-independent Borel
sets.

Recall that a connected component of a vertex v of a graph G is the collection of
vertices w, such that there is a path from v to w in G, i.e., a sequence of vertices
v0, . . . , vn with v0 = v, w = vn and (vi, vi+1) ∈ G. A cycle is an injective sequence
of vertices v0, . . . , vn with n > 1, such that (vn, v0), (vi, vi+1) ∈ G for all i. A graph
is acylcic if it contains no cycles. A graph is d-regular, if every vertex has exactly
d neighbors.

Now let us consider the three examples most important for this lecture.
I. The Basic Example. Let α ∈ [0, π] be such that α

π is irrational. Denote by Tα
the rotation of the circle, S1 by α. For x, y ∈ S1 define

xGy ⇐⇒ Tα(x) = y ∨ Tα(y) = x.

1the reader, not familiar with Borel measurability should take the below claim as a definition.
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When we define a graph G as above from a function Tα, we will refer to G as
the symmetrization of Tα.

Clearly, G is an acyclic 2-regular graph.

Proposition 1.3. 2 = χ(G) < χB(G) = 3.

Proof. To show χ(G) = 2 just notice that connected components of G are bi-infinite
lines, hence they admit a 2-coloring.

To see χB(G) ≤ 3 fix some interval I on S1 with diameter less than α. Clearly I
is G-independent. Since α/π is irrational, for every x 6∈ I, there is some n > 0 with
Tn(x) ∈ I. Then let c(x) = 2 ⇐⇒ x ∈ I and c(x) be the parity of the minimal n
with Tn(x) ∈ I.

Now, for χB(G) > 2 assume that B0∪B1 = S1 is a Borel 2-coloring. Then, there
is an i and a nonempty open interval U with the property that U \ Bi is meager.
But then (as 2α/π is also irrational), there is an odd n with Tnα (U)∩U 6= ∅. Now,
Tnα (U) ∩ Bi is not meager, as it contains Tnα (U) ∩ U ∩ Bi. On the other hand
Tnα (U) ∩ Bi must be meager, as we started with a coloring and Tα is category
preserving. �

The above proof in fact yields that the Baire-measurable chromatic number of
G is 3, where the Baire measurable chromatic number is defined analogously to the
Borel chromatic number, with the coloring required to be only Baire-measurable.
Of course, the measure ideal is also rather natural to consider in this context.

Exercise 1.4. Show that χλ(G) = 3, where χλ is the Lebesgue-measurable chro-
matic number.

II. The Shift Graph. Let [N]N denote the collection of the infinite subsets of the
natural numbers. The shift-graph, GS on [N]N is defined as the symmetrization of
the graph of the shift-map S, that is,

S(x) = x \ {minx}.
Clearly GS is acyclic, and locally finite, that is, every vertex has finitely many

neighbors.

Proposition 1.5. χB(GS) = ℵ0.

Proof. The coloring c(x) = minx shows that χB(GS) ≤ ℵ0. In fact the following,
more general statement is true.

Exercise 1.6. Assume that G is a locally finite Borel graph. Then χB(G) ≤ ℵ0.

Now, to show that χB(GS) is infinite we need the following theorem.

Theorem 1.7 (Galvin-Prikry). Let k, l ∈ N and c : [N]N → l be a Borel coloring.
There exists a set A ∈ [N]ℵ0 such that c � [A]N is constant.

To see our claim, towards contradiction, assume that there is Borel l-coloring c
of GS . Then, by the Galvin-Prikry Theorem there is a set A such that all subsets
of A are homogeneous. In particular, c(A) = c(S(A)), a contradiction. �

The shift-graph has the following, rather surprising property.

Theorem 1.8 (Kechris-Solecki-Todorčević). Let C ⊂ [N]N be Borel. Then χB(GS �
C) ∈ {1, 2, 3,ℵ0}. Moreover, all these chromatic numbers can be realized.
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Proof. Assume that GS � C admits a finite Borel coloring c : V (G)→ k with k ≥ 4.
We show that GS � C admits a Borel k − 1-coloring.

Define a new coloring c′0(x) by c′0(x) = c(S(x)), if S(x) ∈ C and c′0(x) = 0
otherwise. Note that for any x the color of all preimages of x is the same. Clearly
c′0 is also a Borel k-coloring. Now, define c′(x) by letting c′(x) = c′0(x) in case this
value is ≤ k − 2, and otherwise choose a color not used by the neighbors of x (this
is possible, as there are at most two colors used).

Iterating this procedure yields that if χB(GS) is finite, then χB(GS) ≤ 3. �

Exercise 1.9. Show the “moreover” part of the statement.

III. (The Critical Example, G0).
Now we define a graph, which turns out to be a fundamental object in descriptive

set theory and sits in the core of some of the most important dichotomy theorems.
Call a sequence (sn)n∈N of elements of N<N appropriate if for each n we have
|sn| = n and for each t ∈ N<N there is some n with t ⊆ sn.

Definition 1.10. Let (sn)n∈N be an appropriate sequence of elements of N<N. For
x, y ∈ 2N, let xG0y iff

x = sn
_ (i) _ r and y = sn

_ (1− i) _ r
for some r ∈ 2N.2

Exercise 1.11. • G0 is acyclic,
• x and y are on the same connected component of G0 iff x and y differ in

finitely many coordinates.

Proposition 1.12. χB(G0) > ℵ0, In fact, no non-meager set with the BP is G0-
independent.

Proof. Assume that c : 2N → ℵ0 is a Borel coloring. Then, for some i, the set c−1(i)
is non-meager. Since c−1(i) is Baire-measurable, there is some neighborhood Nt
such that Nt \ c−1(i) is meager. In turn, there is some n with Nsn \ c−1(i) meager.
Since the map sn

_ (i) _ r 7→ sn
_ (1 − i) _ r is category preserving from Nsn to

Nsn , there will be some x, y ∈ c−1(i) ∩Nsn , with (x, y) ∈ G0, a contradiction. �

Exercise 1.13. (Challenge, for a beer) Determine χλ(G0).

2. Complexity: The bright side

Our goal now is to understand Borel chromatic numbers of graphs. Intuitively
speaking, given a graph, we should decide whether it has a Borel n-coloring or
not. The natural way of formalizing this intuition is to consider a family (Gx)x∈2N

graphs and consider the complexity of the set {x : χB(Gx) ≤ n}. More precisely, a
Borel parametrized family of Borel graphs is a Borel set G ⊆ (2N)3 so that for each
x the set Gx is a Borel graph on 2N.

Let A,B ⊆ 2N, we say that A ≤W B if there is a continuous map f : 2N → 2N

with f−1(B) = A. If Γ is a collection of subsets of 2N, recall that a set B ⊆ 2N is
Γ-hard, if for any A ∈ Γ, we have A ≤W B. We call a set Γ-complete if it is Γ-hard
and it is in Γ.

2Clearly, this definition depends on the choice of (sn). Nevertheless, we will abuse the termi-
nology by saying talking about the graph G0. This will not cause any problems as all these graphs

are bi-embeddable.
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Observe that if Γ is closed under continuous preimages and there is an A ∈ Γ
with 2N \ A 6∈ Γ and B is Γ-hard then 2N \ B 6∈ Γ: indeed, otherwise the map
witnessing A ≤W B would also witness 2N \A ≤W 2N \B, in particular, 2N \A ∈ Γ.

Let us consider natural upper and lower bounds on this complexity.

Exercise 2.1. For each n ∈ {1, 2, . . . ,ℵ0} there exists a Borel parametrized family
of Borel graphs such that {x : χB(Bx) ≤ n} is coanalytic hard.

Carefully checking the definition of Borel colorings and using further coding
arguments one can show the following.

Proposition 2.2. Let (Gx)x∈2N be a Borel parametrized family of Borel graphs.
Then {x : χB(Gx) ≤ n} is Σ1

2.

For the sake of this note, let us introduce the following shorthand.

Definition 2.3. Let P be a property of Borel graphs. We say that deciding P is
easy, if for any Borel parametrized of Borel graphs (Gx)x∈2N we have {x : P (Gx)}
is coanalytic.

We say that deciding the Borel n-coloring problem is hard if there is a Borel
parametrized of Borel graphs (Gx)x∈2N for which {x : P (Gx)} is Σ1

2-complete.

It turns out, that the case of uncountable chromatic numbers can be understood
quite well. Recall that a homomorphism from a graph G to a graph H is a map
from V (G) to V (H), which maps edges to edges.

Theorem 2.4 (Kechris-Solecki-Todorčević [4]). Let G be a Borel graph. Then
exactly one of the following holds.

(1) χB(G) ≤ ℵ0

(2) G0 ≤B G, where ≤B stands for Borel homomorphism.3

Before sketching the proof of this statement, let us give another description of
the graph G0.

Assume that (Hn)n is a sequence of finite graphs and φn : V (Hn+1) → V (Hn)
are mappings. Define lim←−Hn to a graph on the set

{x̄ ∈
∏

V (Hn) : ∀n φn(xn+1) = xn},

by letting x̄ and ȳ to be connected if ∃n0∀n ≥ n0 we have (xn, yn) ∈ Hn.
Now, let (sn)n∈N be the sequence from the definition of G0. Let Hn be the graph

on 2n where x and y are connected iff for some m < n we have x = sm
_ i _ r and

y = sm
_ (1− i)_ r. Observe that if φn is defined by φn(x) = x � n, then lim←−Hn is

the graph G0. We will think about the sequence (Hn)n as approximations to G0.

Proof Sketch (essentially by Miller). First note that if χB(G) ≤ ℵ0 and G′ admits
a Borel homomorphism to G then χB(G′) ≤ ℵ0. Thus, by Proposition 1.12 the two
options are exclusive.

We associate a tree of promises to approximate a homomorphism from G0 to
G: an approximation is a map an : V (Hn) → 2<N. We say that an+1 extends an
if for all x ∈ Hn+1 we have an+1(x) $ an(φn(x)). We say that an approximation
is reasonable if there exists a homomorphism γ : Hn → G such that for each
x ∈ V (Hn) we have γ(x) ∈ Nan(x). In this case, we say that γ witnesses an.

3If V (G) is a Polish space, Borel can be replaced by continuous.
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Let TG be the tree of reasonable approximations. So, now assume that TG is
well-founded. To each leaf of TG a of length n we associate the set

A(a) = {γ(sn) : γ extends a}.

The next easy lemma is the key combinatorial insight.

Lemma 2.5. A(a) is G-independent.

Proof. Otherwise, there was a reasonable extension a′ of a: we could glue together
a copy of Hn+1 using the edge in A(a) and two corresponding copies of Hn. �

Now remove from the space the set
⋃
a is a leafA(a) (this set has a countable

coloring). Now the leaves seize to be reasonable approximations, update the tree
TG. Iterate this process countably many times, until TG vanishes. This yields a
countable coloring of G.

Unfortunately, even if TG is ill-founded, the approximations don’t necessarily
yield a homomorphism, unless G is closed. However, by starting with a closed set
F projecting onto G and modifying the definition of approximations to encompass
promises about edges (i.e., basic open nbrhds that intersect F ) one can complete
this proof.

�

Remark 2.6. Observe that in the above proof χB(G) ≤ ℵ0 iff TG has no infinite
branches.

Since well-founded trees form a coanalytic set, some further examination of the
complexity of the map G 7→ TG yields the following corollary.

Corollary 2.7. Deciding Borel ℵ0-colorability is easy.

It turns out that an analogous theorem holds for 2-colorability as well.

Theorem 2.8 (Carroy-Miller-Schrittesser-V). There exists a Borel graph, L0 such
that for any Borel graph exactly one of the following holds.

(1) χB(G) ≤ 2
(2) L0 ≤B G, where ≤B stands for Borel homomorphism.

The graph L0 arises from an inverse limit construction analogous to the G0 case,
except that one always adds an odd path instead of a single edge, and keeps the
finite graphs paths.

Since the proof of the theorem is based on an idea similar to the proof of G0,
one gets the following.

Corollary 2.9. Deciding Borel 2-colorability is easy.

3. Complexity: The dark side

In this section we consider results, which describe the impossibility of under-
standing Borel chromatic numbers. Our main tool is going to be the shift graph
GS .

Lemma 3.1. Assume that C ⊂ [N]N is a Borel set and that there exists a Borel
GS-independent set U such that for every x ∈ C there is an n with Sn(x) ∈ U .
Then χB(GS � C) ≤ 3.
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Proof. Color every element of U 2. Color elements x 6∈ U by the parity of the
minimal n with Sn(x) ∈ U . �

We will identify elements of [N]N with their increasing enumeration, i.e., elements
of NN. Recall that a set B ⊆ [N]N is dominating if for all f ∈ [N]N there exists a
g ∈ B with f ≤∗ g (here ≤∗ means that with finitely many exceptions f(n) ≤ g(n)
holds for all n).

Lemma 3.2 ([2]). Assume that B ⊂ [N]N is a non-dominating Borel set. Then
χB(GS � B) ≤ 3.

Proof. Since B is non-dominating, there exists an f such that for all g ∈ B there
are infinitely many n’s with f(n) > g(n). By letting f ′(n) = f(2n), we can make
sure that for any g ∈ B there is an n such that |(rang) ∩ [f ′(n), f ′(n+ 1))| ≥ 2.

Now, let x ∈ U iff for the minimal n for which rang) ∩ [f ′(n), f ′(n + 1)) is
nonempty, we have |(rang) ∩ [f ′(n), f ′(n+ 1))| = 2.

We claim that the requirements of Lemma 3.1 are satisfied: indeed, if g ∈ U
then S(g) 6∈ U , since S(g) contains only one element in the corresponding interval
determined by f ′, and, by the choice of f ′ for each g ∈ B there is an n with
Sn(g) ∈ U . �

Using this lemma one can show the following.

Exercise 3.3. Show that there is a comeager and measure 14 Borel set B with
χB(GS � B) ≤ 3.

This observation is important because it is hint of complexity: measure or cate-
gory cannot detect the large chromatic number of GS .

Proposition 3.4 ([6],[3]). There exists a Borel set B ⊆ 2N × [N]N such that {x :
Bx is non-dominating} is analytic complete and if Bx is dominating then Bx =
[N]N.

Proof. Fix a homeomorphism 2N → P(N<N), and let Tx denote the tree corre-
sponding to x. Then the set {x : Tx ∈ IF} is analytic complete. Now let
B = {(x, f) : ∀g ∈ [Tx] (g 6≤∗ f)}. Clearly, if Tx is ill-founded then Bx is non-
dominating: any f ∈ [Tx] witnesses this, and if [Tx] = ∅ then Bx = [N]N.

We have to verify that B is Borel. We claim that (x, f) 6∈ B iff there is some n
such that for all k there exists an sk ∈ Levk(Tx) with sk(m) ≤ f(m) for all m ≥ n.
The forward direction is clear, and the backward direction follows from König’s
lemma. �

Now let B be the Borel set from above and consider the parametrized family of
graphs (GS � Bx)x. Putting together Lemma 3.2 and Proposition 3.4 we obtain the
following corollary.

Corollary 3.5. {x : χB(GS � Bx) ≤ 3} is analytic complete. In particular, deciding
Borel 3-colorability is not easy.

Using a theorem relying on uniformization one can actually show that in the
case of local problems (e.g. colorings) analytic hardness automatically implies Σ1

2-
completeness. This yields the following result.

4[N]N is identified with a co-countable subset of 2N and let measure mean λ
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Theorem 3.6 (Todorčević-V [7]). Deciding Borel n-colorability is hard for all 2 <
n < ℵ0.

It is not hard to check that this theorem rules out any sort of basis result, among
other conjectures. One significant downside is that this uses graphs with unbounded
degrees (subgraphs of the shift).

Using determinacy methods, Marks has shown the following spectacular result.

Theorem 3.7 (Marks [5]). There exists a 3-regular acyclic Borel graph G with
χB(G) > 3.

Exercise 3.8. Show that if every degree in a Borel graph is at most d, then it
admits a d+ 1-coloring. Hint: use Exercise 1.6 and a greedy algorithm.

It was suggested that Marks’ graph could play the role of a basis for acyclic
3-regular Borel graphs of Borel chromatic number > 3.

The combination of the determinacy method, the Ramsey technique above and,
surprisingly, a trick from distributed computing yields the optimal result.

Theorem 3.9 (Brandt-Chang-Greb́ık-Grunau-Rozhoň-V [1]). Deciding Borel 3-
colorability is hard, even for 3-regular, acyclic Borel graphs.

One would be tempted to think that the hardness of solving the analogous fini-
tary coloring problems are reflected in the Borel case. Unfortunately, this is false.
Similarly to Borel graphs, one can talk about Borel systems of linear equations
above some fixed finite field. In the finite world, Gaussian elimination quickly
solves such systems. In contrast, we have the following theorem.

Theorem 3.10 (Greb́ık-V). Deciding solvability of Borel linear equations over F2

is hard.

4. Open Problems

Coloring problems can be reformulated in terms of homomorphism problems.
For example, n-coloring is a homomorphism to a complete graph on n-vertices.

Problem 4.1. Characterize when a homomorphism problem is hard in the Borel
context.

While Theorem 3.9 is optimal in the Borel context, it could be the case that
there is still a positive answer for very nice graphs.

Problem 4.2. Is deciding 3-colorability hard for continuous graphs on compact
spaces?

Also, one could consider slightly more complicated colorings than Borel ones.

Problem 4.3. Is there a basis for infinitely chromatic subgraphs of the shift, if
considers projective colorings?

A natural question after the 1-2-3-∞ theorem is, that what happens if one allows
more functions.

Problem 4.4. What are the possible Borel chromatic numbers of Borel graphs
given by n-many functions?

Finally, one of the major open problems of the area is to characterize Borel
hyperfiniteness.

Problem 4.5. Is deciding Borel hyperfiniteness hard?
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