Cichoń’s Maximum

Martin Goldstern
(joint work with Jakob Kellner and Saharon Shelah)

Technische Universität Wien

Winter School, Hejnice, Jan 2018
Outline

Background

Generics over subuniverses

Linear witnesses and cone witnesses

Boolean ultrapowers

Proof ideas
Outline

Background

- Generics over subuniverses
- Linear witnesses and cone witnesses
- Boolean ultrapowers

Proof ideas
Cichoń’s Diagram

\[\mathcal{M} = \text{the ideal of meager subsets of } \mathbb{R}. \]

\[\mathcal{N} = \text{the ideal of Lebesgue null sets of } \mathbb{R}. \]

\begin{align*}
\text{cov}(\mathcal{N}) & \to \text{non}(\mathcal{M}) \to \text{cof}(\mathcal{M}) \to \text{cof}(\mathcal{N}) \to 2^{\aleph_0} \\
\aleph_1 & \to \text{add}(\mathcal{N}) \to \text{add}(\mathcal{M}) \to \text{cov}(\mathcal{M}) \to \text{non}(\mathcal{N}) \end{align*}

Are these cardinals different?
Examples

- CH \iff all these cardinals are equal.
- MA $\land \neg$CH \Rightarrow 2 values: $\aleph_1 < \text{add}(\mathcal{N}) = 2^{\aleph_0}$.
- Many other consistency results for 2 values. e.g.

\[
\begin{array}{cccccc}
\square & \rightarrow & \blacksquare & \rightarrow & \cdot & \rightarrow & \blacksquare & \rightarrow & \blacksquare \\
\uparrow & & \uparrow & & \uparrow & & \uparrow & & \uparrow \\
\blacksquare & \rightarrow & \blacksquare & & \blacksquare & & \blacksquare & & \blacksquare \\
\uparrow & & \uparrow & & \uparrow & & \uparrow & & \uparrow \\
\square & \rightarrow & \square & \rightarrow & \cdot & \rightarrow & \square & \rightarrow & \square \\
\end{array}
\]

- Many consistency results for more than 2 values.
Outline

Background

Generics over subuniverses

Linear witnesses and cone witnesses

Boolean ultrapowers

Proof ideas
\begin{equation*}
\begin{tikzcd}
\text{cov}(\mathcal{N}) \arrow{r} & \text{non}(\mathcal{M}) \arrow{r} & \text{cof}(\mathcal{M}) \arrow{r} & \text{cof}(\mathcal{N}) \arrow{r} & 2^{\aleph_0} \\
& & & \text{b} \arrow{ur} & \text{d} \arrow{ur} & \\
\aleph_1 \arrow{u} \arrow{r} & \text{add}(\mathcal{N}) \arrow{u} \arrow{r} & \text{add}(\mathcal{M}) \arrow{u} \arrow{r} & \text{cov}(\mathcal{M}) \arrow{u} \arrow{r} & \text{non}(\mathcal{N}) \arrow{u}
\end{tikzcd}
\end{equation*}

In ZFC:

\begin{align*}
\text{add}(\mathcal{M}) &= \min(\text{b}, \text{cov}(\mathcal{M})) \\
\text{cof}(\mathcal{M}) &= \max(\text{non}(\mathcal{M}), \text{d})
\end{align*}
The left side

General strategy: E.g., to get $\text{cov}(\mathcal{N}) \geq \lambda_2$, iterate (with finite support) for a long time, and make sure to take care of all “small” families F of measure zero sets by adding a random real over F. (“small” means: $< \lambda_2$.)

Hopefully, will not make $\text{cov}(\mathcal{N}) > \lambda_2$.

For simplicity, we will today only consider $\text{cov}(\mathcal{N})$ and \mathfrak{b} on the left side, \mathfrak{d} and $\text{non}(\mathcal{N})$ on the right side.
Main theorem

(G-Kellner-Shelah 2017, arXiv:1708.03691)

Starting from a universe with 4 strongly compact cardinals, we construct a universe in which 10 values $\aleph_1 = \lambda_0 < \cdots < \lambda_9 = 2^{\aleph_0}$ appear in Cichon’s diagram:

\[
\begin{array}{cccccc}
\lambda_2 & \rightarrow & \lambda_4 & \rightarrow & \cdots & \rightarrow \lambda_8 & \rightarrow \lambda_9 \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\lambda_3 & \rightarrow & \lambda_6 \\
\uparrow & & \uparrow \\
\lambda_0 & \rightarrow & \lambda_1 & \rightarrow & \cdots & \rightarrow \lambda_5 & \rightarrow \lambda_7
\end{array}
\]
A fragment of the main theorem

\[\text{cov}(N) = \lambda_2 \rightarrow ?? \rightarrow \cdot \rightarrow ?? \rightarrow ?? \]

\[b = \lambda_3 \rightarrow d = \lambda_6 \]

\[\mathbb{N}_1 \rightarrow ?? \rightarrow \cdot \rightarrow ?? \rightarrow \text{non}(N) = \lambda_7 \]
How to make b large, say: $b \geq \lambda$?

- Iterate a long time.
 In each step add a real dominating some set of size $< \lambda$.
 Use bookkeeping.
 So every small set will be dominated.

How to make b small, say: $b \leq \lambda$.

- Iterate λ steps (or at least with cofinality λ).
 In each step add an unbounded real.
 The generic reals will be an unbounded set.
How to ensure $b \geq \lambda_3$

A “standard” iteration is a FS (finite support) iteration
$\bar{P} = (P_\alpha, Q_\alpha : \alpha < \delta)$ of ccc forcing notions together with a
bookkeeping device $\bar{w} = (w_\alpha : \alpha < \delta)$, where:

- \bar{w} is cofinal in $[\delta]^{<\lambda_3}$, and $\forall \alpha < \delta: w_\alpha \subseteq \alpha$
- Q_α adds a new generic c_α over $V^{\bar{P}|w_\alpha}$.
 (A dominating real if we want to get $b \geq \lambda_3$)
- $V^{\bar{P}|w_\alpha}$ is the model computed from $(c_\beta : \beta \in w_\alpha)$.
- To get $b \geq \lambda_3$ and $\text{cov}(\mathcal{N}) \geq \lambda_2$, let $\delta = S^2 \cup S^3$, use cofinal
 families $\{w^2_\alpha : \alpha \in S^2\} \subseteq [\delta]^{<\lambda_2}$, $\{w^3_\alpha : \alpha \in S^3\} \subseteq [\delta]^{<\lambda_3}$, add
 random reals on S^2 and dominating reals on S^3.

WARNING: This is not trivial. Usually we want $=$, not \geq. Some
work is needed to ensure $b \leq \lambda_3$, $\text{cov}(\mathcal{N}) \leq \lambda_2$.
Use/Develop “preservation theorems”.
Outline

Background

Generics over subuniverses

Linear witnesses and cone witnesses

Boolean ultrapowers

Proof ideas
Witnesses

- A witness for \(d \leq \lambda \) is a family \((g_i : i < \lambda) \in (\omega^\omega)\) of functions \(g_i \in \omega^\omega\) such that \(\forall f \in \omega^\omega \ \exists i < \lambda : f \leq g_i\).

- A witness for \(b \geq \lambda \) is a family \((f_i : i < \lambda) \in (\omega^\omega)\) of functions \(f_i \in \omega^\omega\) such that \(\forall g \in \omega^\omega \ \exists i < \lambda : f_i \not\leq g\).

Similar definitions can be made for the other characteristics. For example, a witness for \(\text{non}(M) \leq \lambda \) is a family \((x_i : i < \lambda)\) of reals which is not meager (equivalently: for every code \(y\) of a meager Borel set \(M_y\) there is \(i < \lambda\) such that \(x_i \notin M_y\)).

In the following slides we will only deal with \(b\) and \(d\); obvious (or at least: routine) modifications will yield appropriate definitions dealing with the other characteristics.
Strong witnesses (for b small and d large): linear witnesses

Recall: $\mathcal{F} = (f_i : i < \lambda)$ is a witness for $b \leq \lambda$ iff \mathcal{F} is unbounded:

$$\forall g \in \omega^\omega : \exists i \ f_i \not\preceq^* g$$

A linear λ-witness is a family $\mathcal{F} = (f_i : i < \lambda)$ of elements of ω^ω such that any g can only bound an initial segment of \mathcal{F}:

$$\forall g \in \omega^\omega : \forall^\infty i < \lambda : \ f_i \not\preceq^* g$$

($\forall^\infty i < \lambda : \cdots$ means “eventually”, i.e., $\exists i_0 \forall i \in (i_0, \lambda) : \cdots$)

$\text{LCU}_{b,d}(\lambda)$: “there is a linear witness of length λ”.

FACT: $\text{LCU}_{b,d}(\lambda) \Rightarrow b \leq \lambda, \ d \geq \lambda$.

FACT: $\text{LCU}(\lambda) \iff \text{LCU}(\text{cf}(\lambda))$.

Similarly $\text{LCU}_{\text{cov}(\mathcal{N}),\text{non}(\mathcal{N})}$.
Strong witnesses (for b large and d small): cone witnesses

Recall: $G = (g_j : j < \lambda)$ is a witness for $d \leq \lambda$ iff G dominates:

$$\forall f \in \omega^\omega : \exists j \ f \leq^* g_j$$

Let λ, μ be regular uncountable. COB$_{b,d}(\lambda, \mu)$ means that there is a (λ, μ)-cone witness: a $<\lambda$-directed partial order (S, \leq) of size μ together with a sequence $(g_s : s \in S)$ of functions $g_s \in \omega^\omega$ such that

$$\forall f \in \omega^\omega \ \forall^\infty s \in S : f \leq g_s$$

As above, $\forall^\infty s \in S$ means “eventually”, i.e., $\exists s_0 \in S \ \forall s > s_0 \ldots$

FACT: COB$_{b,d}(\lambda, \mu) \Rightarrow b \geq \lambda, d \leq \mu$.

We call the set $\{s \in S \mid s \geq s_0\}$ the “cone with tip s_0”. If S is $<\lambda$-directed, then the cones generate a $<\lambda$-closed filter.
Strong witnesses, example 1 ($b \leq \lambda$)

Example

Let λ be regular uncountable. Let $(P_\alpha, Q_\alpha : \alpha < \lambda)$ be a finite support ccc iteration which adds (among other things) an unbounded real c_α at every step. Then P_λ (the FS limit of this iteration) forces that $\vec{c} = (c_\alpha : \alpha < \lambda)$ is a linear λ-witness. (Hence, P_λ forces that $b \leq \lambda$ and $d \geq \lambda$.)

Moreover: If $\lambda' > \lambda$, and we extend $(P_\alpha, Q_\alpha : \alpha < \lambda)$ to a longer iteration $(P_\alpha, Q_\alpha : \alpha < \lambda')$, and the forcings Q_α are “sufficiently nice”, then $P_{\lambda'}$ will force that $(c_\alpha : \alpha < \lambda)$ remains a linear λ-witness, and also $(c_\alpha : \alpha < \lambda')$ becomes a linear λ'-witness. (So $P_{\lambda'}$ forces $\text{LCU}_{b,\varnothing}(\lambda)$ and $\text{LCU}_{b,\varnothing}(\lambda')$, so $b \leq \lambda$ and $d \geq \lambda'$.)

Strong witnesses, example 2 \((b \geq \lambda)\)

Example

Let \((w_\alpha : \alpha < \delta)\) be a family of sets which is cofinal in \([\delta]^{<\lambda}\), with \(w_\alpha \subseteq \alpha\) for all \(\alpha\).

Let \((P_\alpha, Q_\alpha : \alpha < \delta)\) be a “standard” finite support ccc iteration designed to make \(b \geq \lambda\), based on \((w_\alpha : \alpha \in S) \subseteq [\delta]^{<\lambda} , S \subseteq \delta\) (each \(Q_\alpha\) introduces a dominating \(c_\alpha\) over \(V^{P}\upharpoonright w_\alpha\).

Then in \(V^{P_\delta}\), the sequence \((c_\alpha : \alpha \in S)\) is a \((\lambda, |S|)\)-cone witness. So we have \(\text{COB}_{b,0}(\lambda, |S|)\), so \(b \geq \lambda\), and \(0 \leq |S|\).

(We order \(S\) by \(\alpha \sqsubseteq \beta \iff w_\alpha \subseteq w_\beta\). This partial order is clearly \(<\lambda\)-directed. Every \(P_\delta\)-name of a real uses only few coordinates, hence will be in “almost all” \(V^P\upharpoonright W_\alpha\), therefore dominated by almost all \(c_\alpha\).)
Outline

Background

Generics over subuniverses

Linear witnesses and cone witnesses

Boolean ultrapowers

Proof ideas
Boolean ultrapowers (bups)

Let B be a κ-distributive Boolean algebra with the κ^+-cc. A B-bup-name is an pair (A, f), where A is a maximal antichain in B and $f : A \to V$.

Essentially: A B-bup-name is the same as a name of an element of V, using B as a forcing notion. If τ and σ are B-names we write $[\tau = \sigma]$ for the Boolean value of the statement $\tau = \sigma$.

Let U be a $<\kappa$-complete ultrafilter on B. (So U meets all maximal antichains of B of size $< \kappa$, but in general not all those of size κ.) Then U defines an equivalence relation $\tau \sim_U \sigma \iff [\tau = \sigma] \in U$.

The Boolean ultrapower $M = V^B/U$ is the set of all \sim_U-equivalence classes (after the Mostowski collapse). There is a natural embedding $j : V \to M$ using standard names.
Boolean ultrapowers, examples

Example
Let B be a complete Boolean algebra, and let $U \subseteq B$ be a V-generic ultrafilter. Then every element of M is of the form $j(x)$, for some $x \in V$. So $M = V$, $j = id$.

Example
Let $B = \mathcal{P}(\kappa)$ be the powerset of κ. Then every antichain can be refined to the antichain $\{\alpha\} : \alpha \in \kappa$, so every B-bup-name is equivalent to a function $f : \kappa \to V$. In this case M is the “traditional” ultrapower V^κ/U.
Boolean ultrapower embeddings

Assume GCH. Assume that κ is strongly compact. Then for every regular $\theta > \kappa$ there is an elementary embedding $j : V \rightarrow M$ with the following properties:

- $\kappa = cp(j)$
- $\theta \leq j(\kappa) \leq \theta^+$.
- (Every $x \in M$ is described by some (A, f) of size κ)
- If $(S, <)$ is $<\kappa^+$-directed in V, then $j'' S$ is cofinal in $j(S)$.
- If $\lambda \neq \kappa$ is regular, then $cf(j(\lambda)) = \lambda$.
- If $\vec{P} = (P_\alpha, Q_\alpha : \alpha < \delta)$ is a FS ccc iteration, then $j(\vec{P})$ is a FS ccc iteration of length $j(\delta)$ not only in M, but also in V.

Note: M is $\leq \kappa$-closed. Contains all reals, even all names for reals.

REMARK: Moti Gitik suggested an extender ultrapower with a smaller large cardinal.
Outline

Background

Generics over subuniverses

Linear witnesses and cone witnesses

Boolean ultrapowers

Proof ideas
Assume P forces not only $\text{cov}(\mathcal{N}) = \lambda_2$, $b = \lambda_3$, $d = \lambda_6$, but moreover:

\[
\begin{align*}
\text{LCU}_{b,d}(\lambda_3), & \quad \text{LCU}_{b,d}(\lambda_6), \quad \forall \lambda \in (\lambda_2, \lambda_3) : \text{LCU}_{\text{cov}(\mathcal{N}), \text{non}(\mathcal{N})}(\lambda) \\
& \quad b \leq \lambda_3 \quad d \geq \lambda_6 \\
\text{COB}_{b,d}(\lambda_3, \lambda_6), & \quad \text{COB}_{\text{cov}(\mathcal{N}), \text{non}(\mathcal{N})}(\lambda_2, \lambda_6) \\
& \quad b \geq \lambda_3, \quad d \leq \lambda_6 \quad \text{cov}(\mathcal{N}) \geq \lambda_2, \quad \text{non}(\mathcal{N}) \leq \lambda_6
\end{align*}
\]

Assume that κ is strongly compact, $\lambda_2 < \kappa < \lambda_3$. Let $j : V \to M$ be elementary with $\text{cp}(j) = \kappa$ and $\text{cf}(j(\kappa)) = \lambda_7$. Then $j(P) \models \text{non}(\mathcal{N}) = \lambda_7$. (And the other cardinals stay.)
Proof sketch

\[\lambda_2 < \kappa < \lambda_3, \ cf(j(\kappa)) = \lambda_7. \]

- **b stays \leq \lambda_3:**
 \[P \models \text{LCU}_{b, \emptyset}(\lambda_3), \ \text{so} \ j(P) \text{ forces } \text{LCU}_{b, \emptyset}(j(\lambda_3)). \]
 \[b \leq \lambda_3 \quad b \leq j(\lambda_3) \]
 But \ \text{LCU}_{b, \emptyset}(\mu) \iff \text{LCU}_{b, \emptyset}(cf(\mu)), \ \text{so} \ j(P) \models b \leq \lambda_3. \]

- **b stays \geq \lambda_3:**
 \[P \models \text{COB}_{b, \emptyset}(\lambda_3, \lambda_6), \ \text{so} \ j(P) \models \text{COB}_{b, \emptyset}(\lambda_3, \lambda_6). \]
 \[b \geq \lambda_3 \quad b \geq \lambda_3 \]
 (Use \(j'' S \) as a witness! Isomorphic to \(S \), hence same size \(\lambda_6 \).)

- **non(\(\mathcal{N} \)) becomes large:**
 \[P \models \forall \lambda \in (\lambda_2, \lambda_3) : \ldots, \text{in particular} \]
 \[P \models \text{LCU}_{\text{cov}(\mathcal{N}), \text{non}(\mathcal{N})}(\kappa), \ \text{so} \ j(P) \models \text{LCU}_{\text{cov}(\mathcal{N}), \text{non}(\mathcal{N})}(j(\kappa)). \]
 \[\text{non}(\mathcal{N}) \geq cf(\kappa) \quad \text{non}(\mathcal{N}) \geq cf(j(\kappa)) \]