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Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets.

Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets.

Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual

(i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



Trying to remember

Previously:

• Rothberger game: Alice plays open coverings; Bob selects open

sets. Bob wins if he finds a covering.

• point-open game: Alice plays points, Bob plays open sets. Alice

wins if she pushes Bob to give a covering.

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. Alice has

a winning strategy in one of the games iff Bob has a winning strategy in

the other one)

2



One simple implication

Suppose that Alice has a winning strategy σ for the point-open game.

Let us define how Bob should play in the Rothberger game.

Alice plays an open covering C0. σ(〈〉) = x0 would be the first move of

σ in the point-open game. Since C0 is a covering, there is a C0 ∈ C0 such

that x0 ∈ C0. So C0 is the play of Bob.

Then Alice plays C1. Let x1 = σ(〈C1〉). As before, Bob can select

C1 ∈ C1 such that x1 ∈ C1. Then Alice plays C2 and we fix

x2 = σ(〈C1,C2〉) and so on.

The point is, the sequence 〈x0,C0, x1,C1, ...〉 is a play of the point-open

game where the strategy σ was used. Therefore
⋃

n∈ω Cn = X .
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One nice implication

Now suppose that Bob has a winning strategy for the Rothberger game

and we want to find a way for Alice to win the point-open game.

Let us look at the first inning: Alice knows (from the other game) how

to select elements from open coverings. But she needs to begin this

game playing a point.
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The x Lemma

Lemma

Let σ be a strategy for Bob in the Rothberger game.

Then there is an

x ∈ X such that for every open set C such that x ∈ C, there is a C such

that C = σ(〈C〉).

Proof.

Suppose not. Then for every x there is a Cx such that x ∈ Cx and Cx is

not a possible answer from σ. Note that C = {Cx : x ∈ X} is an open

covering. Since σ(〈C〉) ∈ C, we got a contradiction.
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Playing

Alice starts with the x0 given by the x Lemma.

Let C0 be the answer of

Bob. By assumption, there is a C0 such that σ(〈C0〉) = C0. Repeating

the proof of the x Lemma, we can find an x1 such that for all V with

x ∈ V , there is a C such that V = σ(〈C0, C〉). Therefore Alice just

plays x1 and so on.

Therefore the sequence 〈C0,C0, C1,C1, ...〉 is a play of the Rothberger

game where σ was used. Therefore
⋃

n∈ω Cn = X .
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Some notation

Recall that in the Rothberger game, Alice plays open coverings, Bob

selects one element from each open covering and Bob wins if he can

make a covering with his selections.

Let us make it a little bit more general:

Alice plays members of a family A, Bob selects k elements of each

member and Bob wins if the set of his selections is a member of the

family B.

Putting all this together:

Gk(A,B)

7
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Using the notation

Then, if we call O the family of all open coverings, the Rothberger game

is simply

G1(O,O)

Now some variations are easily explained:

G1(O,D)

is clear once you know that D is the family of all dense subsets.

Abusing a little bit from the notation, we can denote the Menger game as

Gfin(O,O)
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Extending the notation

Suppose that we are now in a different situation. Now, instead of Alice

playing an open covering per inning, suppose that she just gives away the

complete sequence of open coverings. Then Bob just has to select one

open set from each. When Bob can make a covering this way, we say

that the selection principle holds and denote such a property as

S1(O,O)
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The general situation

In general, if Alice can make up a sequence that shows the failing of

the selection principle, she can use the same sequence to win the game.

Therefore, the following implications are true:

¬S1(A,B)⇒ Alice ↑ G1(A,B)⇒ Bob 6↑ G1(A,B)

In most of cases of the pairs A, B, none of the “⇐” implications are true.
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Alice ↑ G1(A,B) 6⇒ ¬S1(A,B)

We will use the following family of sets, given p ∈ X ,

Ωp = {A ⊂ X : p ∈ A}

As a warming up, think about the following:

Exercise

If X is first countable at p, then Bob has a winning strategy for

G1(Ωp,Ωp).
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A special example

Consider X = {p} ∪ ω<ω with the following topology. Every s ∈ ω<ω is

isolated and a basic open neighborhood for p is of the form

{p} ∪ ω<ω \ F

where F is a finite collection of branches in ω<ω.
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A picture is better than words
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Alice wins the game

To win, Alice can play as the following:

• Alice plays {〈n〉 : n ∈ ω};
• if Bob plays 〈n〉, Alice plays {〈n,m〉 : m ∈ ω};
• if Bob plays 〈n,m〉, Alice plays {〈n,m, k〉, k ∈ ω};
• and so on.

At the end, the sequence of choices of Bob is a branch in ω<ω. Thus

Alice wins the game.
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Seeing what’s going on
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Seeing what’s going on

23



What about the selection?

To finish the example, we need to show that S1(Ωp,Ωp) holds. We will

do this very indirectly.

First, let us abuse the notation once again and state something about an

undefined term:

Proposition

For every X , S1(Ωp,Ωp) and S2(Ωp,Ωp) are equivalent.

Proof.

Let 〈An : n ∈ ω〉 be a sequence of elements of Ωp. By S2(Ωp,Ωp), we

can find 〈〈an, bn〉 : n ∈ ω〉 where each 〈an, bn〉 ⊂ An and

p ∈ {an : n ∈ ω} ∪ {bn : n ∈ ω}
= {an : n ∈ ω} ∪ {bn : n ∈ ω}

Therefore, selecting 〈an : n ∈ ω〉 or 〈bn : n ∈ ω〉 would be enough.
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So what is missing?

The same way as before, ¬S2(Ωp,Ωp) implies that Alice has a winning

strategy for G2(Ωp,Ωp). Therefore, if we prove that Alice does not

have a winning strategy, we are done. We will do even better, we will

show that actually Bob has a winning strategy for this new game.

(Let just state everything together: we proved that Alice has a winning

strategy for G1(Ωp,Ωp) and we will prove now that Bob has a winning

strategy for the G2(Ωp,Ωp) - this will be enough since this implies

S2(Ωp,Ωp) which is equivalent to S1(Ωp,Ωp))
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Bob’s revenge

We will make a strategy for Bob that guarantees that at each inning n,

the choices of Bob so far contain a set {b1, ..., bn} such that no branch

meets two different elements. Note that this is enough.

At the first inning, just pick any two incompatible elements.

At the n + 1-th inning, suppose that {b1, ..., bn} is as above. Let A ∈ Ωp

be the choice of Alice. There are two cases:

1. there is a bn+1 that is not in the same branch as any of the

b1, ..., bn. Bob just picks this point (and anything else);

2. There is no bn+1 as above. Note that Ar {b1, ..., bn} ∈ Ωp.

Therefore there are c1, c2 ∈ Ar {b1, ..., bn} and bj such that

bj ⊂ c1, c2. Note that {b1, ..., bn, c1, c2}r {bj} satisfies what we

want.
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1. there is a bn+1 that is not in the same branch as any of the

b1, ..., bn. Bob just picks this point (and anything else);

2. There is no bn+1 as above. Note that Ar {b1, ..., bn} ∈ Ωp.

Therefore there are c1, c2 ∈ Ar {b1, ..., bn} and bj such that

bj ⊂ c1, c2. Note that {b1, ..., bn, c1, c2}r {bj} satisfies what we

want.
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Sometimes things are different - because things are the same

After seeing this, we can enjoy even better the following (non trivial)

results:

Hurewicz, 1925

¬Sfin(O,O)⇔ Alice ↑ Gfin(O,O)

Pawlikowski, 1994

¬S1(O,O)⇔ Alice ↑ G1(O,O)
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Some repetition

Definition

The neighborhood-point game is played as follows (fixed a point p):at

every inning n, Alice plays Vn an open neighborhood of p and Bob

plays xn ∈ Vn

At the end, Alice is the winner if {xn : n ∈ ω} ∈ Ωp.

Theorem ([2])

The games G1(Ωp,Ωp) and neighborhood-point are dual.

Theorem ([2])

If the space is separable and Bob has a winning strategy for G1(Ωp,Ωp),

then p has a local countable base.
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So what about the outside world?

Definition

We say that X is countably tight at the point p ∈ X if for every

A ∈ Ωp, there is a countable B ⊂ A such that B ∈ Ωp.

Usually, if X and Y are countably tight at the points p and q, it is not

necessarily true that X × Y is countably tight at 〈p, q〉. But if X has a

countable local base at p, this would be true. That motivates the

following definition:

Definition

We say that X is productively countably tight at p if for every Y

countably tight at q, X × Y is countably tight at 〈p, q〉.
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In between

Arhangel’skii has an internal characterization for productively countably

tight spaces. And it is a quite complicated one. But is sits comfortably

between some of the previous properties:

Bob ↑ G1(Ωp,Ωp)⇒ X is productively countably tight atp ⇒ S1(ΩpΩp)

30
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Since we are talking about products...

Definition

We say that X is productively Lindelöf if X × Y is Lindelöf for every

Lindelöf space Y .

Probably the most important problem about this subject is to decide if P

(irrationals) is productively Lindelöf.

It is consistent that is not. We say that a space M is a Michael space if

P ×M is not Lindelöf.

Theorem ([3])

If there is a Michael space, then every productively Lindelöf space is

Menger.
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