Some games and their topological consequences

Leandro F. Aurichi

ICMC-USP (Partially supported by FAPESP)

First example

Fixed a topological space X, the **Rothberger game** is played as follows:

• ALICE plays an open covering \mathcal{C}_0 ;

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays $C_0 \in \mathcal{C}_0$;

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays $C_0 \in \mathcal{C}_0$;
- ALICE plays an open covering \mathcal{C}_1 ;

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays $C_0 \in \mathcal{C}_0$;
- ALICE plays an open covering \mathcal{C}_1 ;
- BOB plays $C_1 \in C_1$;

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays $C_0 \in \mathcal{C}_0$;
- ALICE plays an open covering \mathcal{C}_1 ;
- BOB plays $C_1 \in C_1$;
- and so on, for every $n \in \omega$.

Fixed a topological space X, the **Rothberger game** is played as follows:

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays $C_0 \in C_0$;
- ALICE plays an open covering C_1 ;
- BOB plays $C_1 \in \mathcal{C}_1$;
- and so on, for every $n \in \omega$.

At the end, BOB is declared the winner if $\bigcup_{n \in \omega} C_n = X$ and ALICE is declared the winner otherwise.

A strategy for a player is a function $\boldsymbol{\sigma}$ such that

A strategy for a player is a function σ such that

 σ (HISTORY OF THE GAME SO FAR)

is a movement for the player at the current inning.

A strategy for a player is a function σ such that

 σ (HISTORY OF THE GAME SO FAR)

is a movement for the player at the current inning.

A winning strategy for a player is a strategy that wins the game, no matter how well the other player plays.

A strategy for a player is a function σ such that

 σ (HISTORY OF THE GAME SO FAR)

is a movement for the player at the current inning.

A winning strategy for a player is a strategy that wins the game, no matter how well the other player plays.

In general, one player not having a winning strategy does not imply that the other player has one

A strategy for a player is a function σ such that

 σ (HISTORY OF THE GAME SO FAR)

is a movement for the player at the current inning.

A winning strategy for a player is a strategy that wins the game, no matter how well the other player plays.

In general, one player not having a winning strategy does not imply that the other player has one - it's a matter of order of quantifiers: there is a strategy that beats all the other ones and every strategy is beaten for some strategy.

A strategy for a player is a function σ such that

 σ (HISTORY OF THE GAME SO FAR)

is a movement for the player at the current inning.

A winning strategy for a player is a strategy that wins the game, no matter how well the other player plays.

In general, one player not having a winning strategy does not imply that the other player has one - it's a matter of order of quantifiers: there is a strategy that beats all the other ones and every strategy is beaten for some strategy.

Definition

We say that a topological space is a **Rothberger space** if ALICE does not have a winning strategy.

Very easy stuff

• If X is countable, then BOB has a winning strategy (therefore, X is Rothberger);

- If X is countable, then BOB has a winning strategy (therefore, X is Rothberger);
- If X is Rothberger, then X is Lindelöf;

- If X is countable, then BOB has a winning strategy (therefore, X is Rothberger);
- If X is Rothberger, then X is Lindelöf;
- Compact spaces are...

- If X is countable, then BOB has a winning strategy (therefore, X is Rothberger);
- If X is Rothberger, then X is Lindelöf;
- Compact spaces are... ?

 2^{ω} is a compact space that is not Rothberger.

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for $\ensuremath{\operatorname{ALICE}}$.

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for $\mbox{ALICE}.$ For every $n\in\omega,$ let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for $\operatorname{ALICE}.$ For every $n\in\omega,$ let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

Note that $C_n = \{C_n^0, C_n^1\}$ is an open covering for X.

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for ALICE. For every $n \in \omega$, let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

Note that $C_n = \{C_n^0, C_n^1\}$ is an open covering for X. Therefore, ALICE can play C_n at the *n*-th inning.

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for ALICE. For every $n \in \omega$, let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

Note that $C_n = \{C_n^0, C_n^1\}$ is an open covering for X. Therefore, ALICE can play C_n at the *n*-th inning. This way, we can think that the choices of BOB are 0 or 1 (for C_n^0 and C_n^1).

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for ALICE. For every $n \in \omega$, let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

Note that $C_n = \{C_n^0, C_n^1\}$ is an open covering for X. Therefore, ALICE can play C_n at the *n*-th inning. This way, we can think that the choices of BOB are 0 or 1 (for C_n^0 and C_n^1). Let $f \in 2^{\omega}$ be such that $f(n) = i_n + 1 \mod 2$, where i_n is the choice of BOB at the *n*-th inning.

 2^{ω} is a compact space that is not Rothberger.

Proof.

We have to show that there is a winning strategy for ALICE. For every $n \in \omega$, let

$$C_n^0 = \{ f \in 2^\omega : f(n) = 0 \} \ C_n^1 = \{ f \in 2^\omega : f(n) = 1 \}$$

Note that $C_n = \{C_n^0, C_n^1\}$ is an open covering for X. Therefore, ALICE can play C_n at the *n*-th inning. This way, we can think that the choices of BOB are 0 or 1 (for C_n^0 and C_n^1). Let $f \in 2^{\omega}$ be such that $f(n) = i_n + 1 \mod 2$, where i_n is the choice of BOB at the *n*-th inning. Note that f is not covered by the choices of BOB.

Drawing strategies

Often it is useful to draw sketches of strategies.

Often it is useful to draw sketches of strategies. Let us start with a simple one: strategies for A_{LICE} in the Rothberger game.

Often it is useful to draw sketches of strategies. Let us start with a simple one: strategies for ALICE in the Rothberger game.

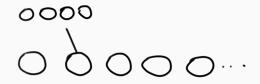
First, it is good to note the following: the Rothberger game is only interesting for the Lindelöf case.

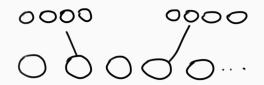
Often it is useful to draw sketches of strategies. Let us start with a simple one: strategies for ALICE in the Rothberger game.

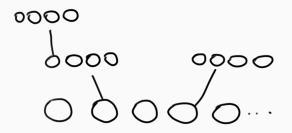
First, it is good to note the following: the Rothberger game is only interesting for the Lindelöf case. In this way, we can suppose that every covering played by ALICE is countable.

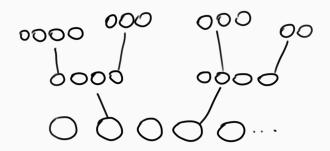
Sketch of Alice's strategy

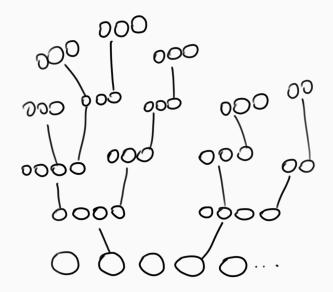
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

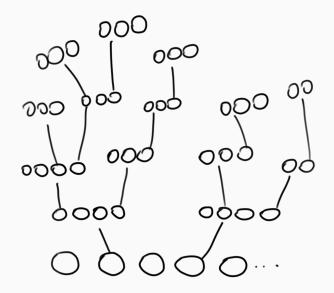


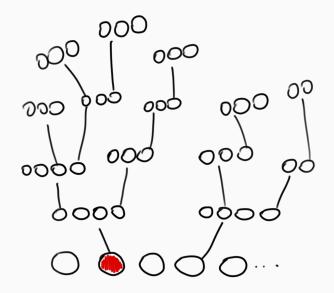


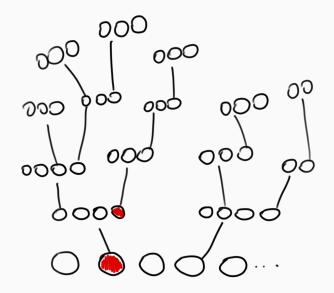


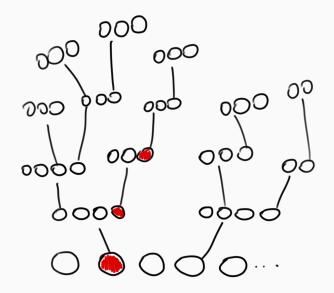


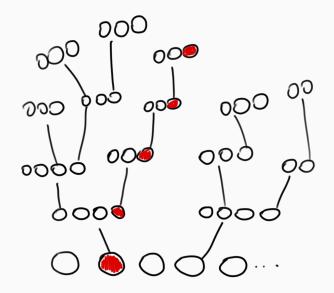












Variations of the game

• to restrict what kind of coverings ALICE can play (e.g., only countable ones, point-cofinite open coverings etc.);

- to restrict what kind of coverings ALICE can play (e.g., only countable ones, point-cofinite open coverings etc.);
- to let BOB to play more open sets (e.g., finitely many open sets instead of just one);

- to restrict what kind of coverings ALICE can play (e.g., only countable ones, point-cofinite open coverings etc.);
- to let BOB to play more open sets (e.g., finitely many open sets instead of just one);
- to change the length of the game (e.g., to $\omega + \omega$ innings or ω_1 innings);

- to restrict what kind of coverings ALICE can play (e.g., only countable ones, point-cofinite open coverings etc.);
- to let BOB to play more open sets (e.g., finitely many open sets instead of just one);
- to change the length of the game (e.g., to $\omega + \omega$ innings or ω_1 innings);
- to put some kind of amnesia on the players (e.g. they only remember the previous inning, or just the number of the current inning).

The long Rothberger game

Proposition

If X is hereditarily Lindelöf, then BOB has a winning strategy in the long Rothberger game.

Proposition

If X is hereditarily Lindelöf, then BOB has a winning strategy in the long Rothberger game.

Proof.

At every inning α , if BOB didn't win already, there is an $x_{\alpha} \notin \bigcup_{\beta < \alpha} C_{\beta}$.

Proposition

If X is hereditarily Lindelöf, then BOB has a winning strategy in the long Rothberger game.

Proof.

At every inning α , if BOB didn't win already, there is an $x_{\alpha} \notin \bigcup_{\beta < \alpha} C_{\beta}$. Therefore, BOB plays $C_{\alpha} \in C_{\alpha}$ such that $x_{\alpha} \in C_{\alpha}$.

Proposition

If X is hereditarily Lindelöf, then BOB has a winning strategy in the long Rothberger game.

Proof.

At every inning α , if BOB didn't win already, there is an $x_{\alpha} \notin \bigcup_{\beta < \alpha} C_{\beta}$. Therefore, BOB plays $C_{\alpha} \in C_{\alpha}$ such that $x_{\alpha} \in C_{\alpha}$. Note that if BOB does not win during the whole game, the subspace $\{x_{\alpha} : \alpha < \omega_1\}$ is not Lindelöf, what is a contradiction. It turns out that ALICE not having a winning strategy in the long Rothberger game is equivalent to the space being indestructible Lindelöf:

It turns out that ALICE not having a winning strategy in the long Rothberger game is equivalent to the space being indestructible Lindelöf:

Definition

A Lindelöf space is **indestructible Lindelöf** if it is still Lindelöf after any countably closed forcing.

It turns out that ALICE not having a winning strategy in the long Rothberger game is equivalent to the space being indestructible Lindelöf:

Definition

A Lindelöf space is **indestructible Lindelöf** if it is still Lindelöf after any countably closed forcing.

(This was done first by Tall (without any game language) and later by Scheepers and Tall [3])

It turns out that A_{LICE} not having a winning strategy in the long Rothberger game is equivalent to the space being indestructible Lindelöf:

Definition

A Lindelöf space is **indestructible Lindelöf** if it is still Lindelöf after any countably closed forcing.

(This was done first by Tall (without any game language) and later by Scheepers and Tall [3])

Looking at this proof, you can prove that compact Rothberger spaces are exactly the compacts that remain compact after any forcing extension.

An important game that can be seen as a modification of the Rothberger game is the Menger game:

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

Fixed a topological space X, the **Menger game** is played as follows:

• ALICE plays an open covering \mathcal{C}_0 ;

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

- ALICE plays an open covering \mathcal{C}_0 ;
- Bob plays a finite $C_0 \subset C_0$;

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

- ALICE plays an open covering \mathcal{C}_0 ;
- Bob plays a finite $C_0 \subset C_0$;
- ALICE plays an open covering \mathcal{C}_1 ;

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

- ALICE plays an open covering \mathcal{C}_0 ;
- Bob plays a finite $C_0 \subset C_0$;
- ALICE plays an open covering C_1 ;
- BOB plays a finite $C_1 \subset C_1$;

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

- ALICE plays an open covering \mathcal{C}_0 ;
- Bob plays a finite $C_0 \subset C_0$;
- ALICE plays an open covering C_1 ;
- BOB plays a finite $C_1 \subset C_1$;
- and so on, for every $n \in \omega$.

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

Fixed a topological space X, the **Menger game** is played as follows:

- ALICE plays an open covering \mathcal{C}_0 ;
- BOB plays a finite $C_0 \subset C_0$;
- ALICE plays an open covering C_1 ;
- BOB plays a finite $C_1 \subset C_1$;
- and so on, for every $n \in \omega$.

At the end, BOB is declared the winner if $\bigcup_{n \in \omega} C_n$ is a covering for X and ALICE is declared the winner otherwise.

Menger game

An important game that can be seen as a modification of the Rothberger game is the Menger game:

Definition

Fixed a topological space X, the **Menger game** is played as follows:

- ALICE plays an open covering \mathcal{C}_0 ;
- Bob plays a finite $C_0 \subset C_0$;
- ALICE plays an open covering C_1 ;
- BOB plays a finite $C_1 \subset C_1$;
- and so on, for every $n \in \omega$.

At the end, BOB is declared the winner if $\bigcup_{n \in \omega} C_n$ is a covering for X and ALICE is declared the winner otherwise.

If ALICE does not have a winning strategy, the space is said to be a $\ensuremath{\mathsf{Menger}}$ space.

Very easy stuff

• Every Rothberger space is Menger;

- Every Rothberger space is Menger;
- Every Menger space is Lindelöf;

- Every Rothberger space is Menger;
- Every Menger space is Lindelöf;
- Every compact space is Menger;

- Every Rothberger space is Menger;
- Every Menger space is Lindelöf;
- Every compact space is Menger;
- If the space is $\sigma\text{-compact},$ then BOB has a winning strategy.

Second countable spaces

For second countable spaces, these properties are not so different.

For second countable spaces, these properties are not so different.

Theorem ([4, 2])

Every regular second countable space where BOB has a winning strategy is σ -compact.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

 $K = \sigma(\mathcal{C})$

Lemma

Let σ be a strategy for BOB in the Menger game. Then

 $K = \bigcup \sigma(\mathcal{C})$

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$K = \overline{\bigcup \sigma(\mathcal{C})}$$

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX .

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX .

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX . This way, \tilde{K} is compact.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX . This way, \tilde{K} is compact. If we show that $\tilde{K} \subset X$, then $K = \tilde{K}$ and we are done.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX . This way, \tilde{K} is compact. If we show that $\tilde{K} \subset X$, then $K = \tilde{K}$ and we are done.

Suppose that there is a $y \in \tilde{K} \smallsetminus X$.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX . This way, \tilde{K} is compact. If we show that $\tilde{K} \subset X$, then $K = \tilde{K}$ and we are done.

Suppose that there is a $y \in \tilde{K} \setminus X$. It is very easy to ALICE to come up with a covering C for X with open sets from βX such that $y \notin \overline{C}$ for all $C \in C$.

Lemma

Let σ be a strategy for BOB in the Menger game. Then

$$\mathcal{K} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C})}$$

is compact.

Proof.

Pretend that all the open sets played are open subsets of βX . Let \tilde{K} be like K - but with the closures taken in βX . This way, \tilde{K} is compact. If we show that $\tilde{K} \subset X$, then $K = \tilde{K}$ and we are done.

Suppose that there is a $y \in \tilde{K} \setminus X$. It is very easy to ALICE to come up with a covering C for X with open sets from βX such that $y \notin \overline{C}$ for all $C \in C$. Therefore, $y \notin \bigcup \overline{\sigma(C)}^{\beta X} \supset \tilde{K}$.

Let us focus on the first inning.

Let us focus on the first inning.

First, fix a countable base ${\cal B}$ and suppose that ${\rm ALICE}$ will only play coverings made by basic open sets.

Let us focus on the first inning.

First, fix a countable base ${\cal B}$ and suppose that ${\rm ALICE}$ will only play coverings made by basic open sets.

Even with this restriction, $\rm ALICE$ can ask uncountably many questions. But the important thing is that $\rm BOB$ has only countably many possible answers.

Let us focus on the first inning.

First, fix a countable base ${\cal B}$ and suppose that ${\rm ALICE}$ will only play coverings made by basic open sets.

Even with this restriction, $\rm ALICE$ can ask uncountably many questions. But the important thing is that $\rm BOB$ has only countably many possible answers.

Let K_0 be the "intersection" of all these possible answers, as in the Mysterious Lemma. As before, K_0 is compact.

Let us focus on the first inning.

First, fix a countable base ${\cal B}$ and suppose that ${\rm ALICE}$ will only play coverings made by basic open sets.

Even with this restriction, $\rm ALICE$ can ask uncountably many questions. But the important thing is that $\rm BOB$ has only countably many possible answers.

Let K_0 be the "intersection" of all these possible answers, as in the Mysterious Lemma. As before, K_0 is compact.

Since K_0 is the intersection of countably many answers, let us fix countably many questions for ALICE,

Let us focus on the first inning.

First, fix a countable base ${\cal B}$ and suppose that ${\rm ALICE}$ will only play coverings made by basic open sets.

Even with this restriction, $\rm ALICE$ can ask uncountably many questions. But the important thing is that $\rm BOB$ has only countably many possible answers.

Let K_0 be the "intersection" of all these possible answers, as in the Mysterious Lemma. As before, K_0 is compact.

Since K_0 is the intersection of countably many answers, let us fix countably many questions for ALICE, i.e:

$$K_0 = \bigcap_{n \in \omega} \bigcup \sigma(\mathcal{C}_{\langle n \rangle})$$

Now let us proceed in the game.

Now let us proceed in the game. If ALICE played $C_{\langle n \rangle}$ in the first inning, we can define $K_{\langle n \rangle}$ as in the Mysterious Lemma:

Now let us proceed in the game. If ALICE played $C_{\langle n \rangle}$ in the first inning, we can define $K_{\langle n \rangle}$ as in the Mysterious Lemma:

$$\mathcal{K}_{\langle n
angle} = igcap_{\mathcal{C} \in \mathcal{O}} \overline{igcup \sigma(\mathcal{C}_{\langle n
angle}, \mathcal{C}))}$$

Now let us proceed in the game. If ALICE played $C_{\langle n \rangle}$ in the first inning, we can define $K_{\langle n \rangle}$ as in the Mysterious Lemma:

$$\mathcal{K}_{\langle n \rangle} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C}_{\langle n \rangle}, \mathcal{C}))}$$

As before, $K_{\langle n \rangle}$ is compact. Moreover, counting again the questions and answers, we can find $\langle C_{\langle n,k \rangle} : k \in \omega \rangle$ such that

Now let us proceed in the game. If ALICE played $C_{\langle n \rangle}$ in the first inning, we can define $K_{\langle n \rangle}$ as in the Mysterious Lemma:

$$\mathcal{K}_{\langle n \rangle} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C}_{\langle n \rangle}, \mathcal{C}))}$$

As before, $K_{\langle n \rangle}$ is compact. Moreover, counting again the questions and answers, we can find $\langle C_{\langle n,k \rangle} : k \in \omega \rangle$ such that

$$\mathcal{K}_{\langle n
angle} = igcap_{k \in \omega} \overline{igcup \sigma(\mathcal{C}_{\langle n
angle}, \mathcal{C}_{\langle n, k
angle})}$$

Now let us proceed in the game. If ALICE played $C_{\langle n \rangle}$ in the first inning, we can define $K_{\langle n \rangle}$ as in the Mysterious Lemma:

$$\mathcal{K}_{\langle n \rangle} = \bigcap_{\mathcal{C} \in \mathcal{O}} \overline{\bigcup \sigma(\mathcal{C}_{\langle n \rangle}, \mathcal{C})}$$

As before, $K_{\langle n \rangle}$ is compact. Moreover, counting again the questions and answers, we can find $\langle C_{\langle n,k \rangle} : k \in \omega \rangle$ such that

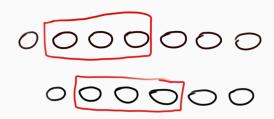
$$\mathcal{K}_{\langle n
angle} = igcap_{k \in \omega} \overline{igcup \sigma(\mathcal{C}_{\langle n
angle}, \mathcal{C}_{\langle n, k
angle}))}$$

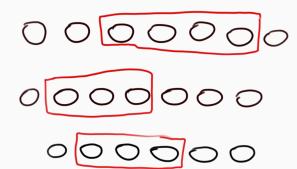
Doing like this, we obtain $\langle K_s : s \in \omega^{<w} \rangle$.

Is it enough?

Now we only have to prove that $\bigcup_{s \in \omega^{<\omega}} K_s = X$.

Now we only have to prove that $\bigcup_{s \in \omega^{<\omega}} K_s = X$. Suppose not.





The **point-open game** is played over a space X as follows:

• ALICE plays an $x_0 \in X$;

- ALICE plays an $x_0 \in X$;
- BOB plays V_0 an open neighborhood of x_0 ;

- ALICE plays an $x_0 \in X$;
- BOB plays V_0 an open neighborhood of x_0 ;
- ALICE plays $x_1 \in X$;

- ALICE plays an $x_0 \in X$;
- BOB plays V_0 an open neighborhood of x_0 ;
- ALICE plays $x_1 \in X$;
- BOB plays V_1 an open neighborhood of x_1 ;

- ALICE plays an $x_0 \in X$;
- BOB plays V_0 an open neighborhood of x_0 ;
- ALICE plays $x_1 \in X$;
- BOB plays V_1 an open neighborhood of x_1 ;
- and so on, for every $n \in \omega$.

The **point-open game** is played over a space X as follows:

- ALICE plays an $x_0 \in X$;
- BOB plays V_0 an open neighborhood of x_0 ;
- ALICE plays $x_1 \in X$;
- BOB plays V_1 an open neighborhood of x_1 ;
- and so on, for every $n \in \omega$.

At the end, ALICE is declared the winner if $\bigcup_{n \in \omega} V_n = X$ and BOB is declared the winner otherwise.

Relations between point-open and Rothberger

This is not the only connection:

This is not the only connection:

Theorem ([1])

The Rothberger game and the point-open game are dual

This is not the only connection:

Theorem ([1])

The Rothberger game and the point-open game are dual (i.e. ALICE has a winning strategy in one of the games iff BOB has a winning strategy in the other one)

One simple implication

ALICE plays an open covering \mathcal{C}_0 .

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 .

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 . Let $x_1 = \sigma(\langle C_1 \rangle)$.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 . Let $x_1 = \sigma(\langle C_1 \rangle)$. As before, BOB can select $C_1 \in C_1$ such that $x_1 \in C_1$.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 . Let $x_1 = \sigma(\langle C_1 \rangle)$. As before, BOB can select $C_1 \in C_1$ such that $x_1 \in C_1$. Then ALICE plays C_2 and we fix $x_2 = \sigma(\langle C_1, C_2 \rangle)$ and so on.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 . Let $x_1 = \sigma(\langle C_1 \rangle)$. As before, BOB can select $C_1 \in C_1$ such that $x_1 \in C_1$. Then ALICE plays C_2 and we fix $x_2 = \sigma(\langle C_1, C_2 \rangle)$ and so on.

The point is, the sequence $\langle x_0, C_0, x_1, C_1, ... \rangle$ is a play of the point-open game where the strategy σ was used.

ALICE plays an open covering C_0 . $\sigma(\langle \rangle) = x_0$ would be the first move of σ in the point-open game. Since C_0 is a covering, there is a $C_0 \in C_0$ such that $x_0 \in C_0$. So C_0 is the play of BOB.

Then ALICE plays C_1 . Let $x_1 = \sigma(\langle C_1 \rangle)$. As before, BOB can select $C_1 \in C_1$ such that $x_1 \in C_1$. Then ALICE plays C_2 and we fix $x_2 = \sigma(\langle C_1, C_2 \rangle)$ and so on.

The point is, the sequence $\langle x_0, C_0, x_1, C_1, ... \rangle$ is a play of the point-open game where the strategy σ was used. Therefore $\bigcup_{n \in \omega} C_n = X$.

One nice implication

Now suppose that BOB has a winning strategy for the Rothberger game and we want to find a way for ALICE to win the point-open game.

Now suppose that BOB has a winning strategy for the Rothberger game and we want to find a way for ALICE to win the point-open game.

Let us look at the first inning: ALICE knows (from the other game) how to select elements from open coverings.

Now suppose that BOB has a winning strategy for the Rothberger game and we want to find a way for ALICE to win the point-open game.

Let us look at the first inning: ALICE knows (from the other game) how to select elements from open coverings. But she needs to begin this game playing a point.

Let σ be a strategy for BOB in the Rothberger game.

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x\in X$

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x \in X$ such that for every open set C such that $x \in C$, there is a C such that $C = \sigma(C)$.

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x \in X$ such that for every open set C such that $x \in C$, there is a C such that $C = \sigma(C)$.

Proof.

Suppose not.

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x \in X$ such that for every open set C such that $x \in C$, there is a C such that $C = \sigma(C)$.

Proof.

Suppose not. Then for every x there is a C_x such that $x \in C_x$ and C_x is not a possible answer from σ .

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x \in X$ such that for every open set C such that $x \in C$, there is a C such that $C = \sigma(C)$.

Proof.

Suppose not. Then for every x there is a C_x such that $x \in C_x$ and C_x is not a possible answer from σ . Note that $C = \{C_x : x \in X\}$ is an open covering.

Let σ be a strategy for BOB in the Rothberger game. Then there is an $x \in X$ such that for every open set C such that $x \in C$, there is a C such that $C = \sigma(C)$.

Proof.

Suppose not. Then for every x there is a C_x such that $x \in C_x$ and C_x is not a possible answer from σ . Note that $\mathcal{C} = \{C_x : x \in X\}$ is an open covering. Since $\sigma(\mathcal{C}) \in \mathcal{C}$, we got a contradiction.

ALICE starts with the x_0 given by the x Lemma.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB. By assumption, there is a C_0 such that $\sigma(\langle C_0 \rangle) = C_0$.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB. By assumption, there is a C_0 such that $\sigma(\langle C_0 \rangle) = C_0$. Repeating the proof of the x Lemma, we can find an x_1 such that for all V with $x \in V$, there is a C such that $V = \sigma(C_0, C)$.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB. By assumption, there is a C_0 such that $\sigma(\langle C_0 \rangle) = C_0$. Repeating the proof of the x Lemma, we can find an x_1 such that for all V with $x \in V$, there is a C such that $V = \sigma(C_0, C)$. Therefore ALICE just plays x_1 and so on.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB. By assumption, there is a C_0 such that $\sigma(\langle C_0 \rangle) = C_0$. Repeating the proof of the x Lemma, we can find an x_1 such that for all V with $x \in V$, there is a C such that $V = \sigma(C_0, C)$. Therefore ALICE just plays x_1 and so on.

Therefore the sequence $\langle C_0, C_0, C_1, C_1, ... \rangle$ is a play of the Rothberger game where σ was used.

ALICE starts with the x_0 given by the x Lemma. Let C_0 be the answer of BOB. By assumption, there is a C_0 such that $\sigma(\langle C_0 \rangle) = C_0$. Repeating the proof of the x Lemma, we can find an x_1 such that for all V with $x \in V$, there is a C such that $V = \sigma(C_0, C)$. Therefore ALICE just plays x_1 and so on.

Therefore the sequence $\langle C_0, C_0, C_1, C_1, ... \rangle$ is a play of the Rothberger game where σ was used. Therefore $\bigcup_{n \in \omega} C_n = X$.

Bibliography

F. Galvin.

Indeterminacy of point-open games.

Bull. Acad. Polon. Sci., 26:445-449, 1978.

M. Scheepers.

A direct proof of a Theorem of Telgársky.

Proceedings of the American Mathematical Society, 123(11):3483-3485, 1995.

M. Scheepers and F. D. Tall.

Lindelöf indestructibility, topological games and selection principles.

Fundamenta Mathematicae, 210:1–46, 2010.

R. Telgársky.

On games of Topsoe.

Mathematica Scandinavica, 54:170–176, 1984.