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In the nineties Peter Nyikos announced that certain space is an
Eberlein compactum that is not bisequential.
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In the nineties Peter Nyikos announced that certain space is an
Eberlein compactum that is not bisequential.

Properties of Eberlein Compacta
Peter J. Nyikos (University of South Carolina, Columbia, SC)

A space X is bisequential [resp. biradial] if, whenever p is a point of X and I is an
ultrafilter converging to p, then there is a countable [resp. totally ordered] B C U such
that the filter generated by B converges to p. A compact space is called Eberlein compact
if it can be embedded in a Banach space with the weak topology.

Of course, every bisequential space is biradial.

Example. Let X be the set of all antichains in wy X wy, with the product topology. |
Then X is Eberlein compact and not bisequential,[but is biradial, while X x w + 1 is
Eberlein compact, but not biradial. 7

In contrast, every uniform Eberlein compact space (=weakly compact subset of a
Hilbert space) of size smaller than the first uncountable measurable cardinal is bisequential.

There are also examples of Eberlein compacta which are not uniformly Eberlein com-
pact, but still bisequential. However, the following problem is still unsolved: is there a
Banach space of which every weakly compact subset is bisequential, but not every weakly
compact subset is uniform Eberlein compact?
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Properties of Eberlein Compacta
Peter J. Nyikos (University of South Carolina, Columbia, SC)

A space X is bisequential [resp. biradial] if, whenever p is a point of X and I is an
ultrafilter converging to p, then there is a countable [resp. totally ordered] B C U such
that the filter generated by B converges to p. A compact space is called Eberlein compact
if it can be embedded in a Banach space with the weak topology.

Of course, every bisequential space is biradial.

Example. Let X be the set of all antichains in wy X wy, with the product topology. |
Then X is Eberlein compact and not bisequential,[but is biradial, while X x w + 1 is
Eberlein compact, but not biradial. 7

In contrast, every uniform Eberlein compact space (=weakly compact subset of a
Hilbert space) of size smaller than the first uncountable measurable cardinal is bisequential.

There are also examples of Eberlein compacta which are not uniformly Eberlein com-
pact, but still bisequential. However, the following problem is still unsolved: is there a
Banach space of which every weakly compact subset is bisequential, but not every weakly
compact subset is uniform Eberlein compact?

In the following presentation | will prove this fact.

Tomasz Ciesla A filter on a collection of finite sets. A non-bisequential Eberlein compactum.



Why would one look for an example of such space?

Eberlein compacta are Frechet-Urysohn, i.e. for every subset A and
every x € A there exists a sequence xi, x2, . .. of elements of A
converging to x.
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Why would one look for an example of such space?

Eberlein compacta are Frechet-Urysohn, i.e. for every subset A and
every x € A there exists a sequence xi, x2, . .. of elements of A
converging to x.

Frechet-Urysohn spaces behave rather badly, e.g. there are two
compact Frechet-Urysohn spaces whose product isn't
Frechet-Urysohn.
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Why would one look for an example of such space?

Eberlein compacta are Frechet-Urysohn, i.e. for every subset A and
every x € A there exists a sequence xi, x2, . .. of elements of A
converging to x.

Frechet-Urysohn spaces behave rather badly, e.g. there are two
compact Frechet-Urysohn spaces whose product isn't
Frechet-Urysohn.

Every bisequential space is Frechet-Urysohn.

Bisequential spaces have many nice properties, e.g. they are closed
under countable products and subspaces. Continuous images of
compact bisequential spaces are bisequential too.
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Let X be the set of the graphs of all strictly decreasing functions
f: S — wi, where § C ws.
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Let X be the set of the graphs of all strictly decreasing functions
f: S — wi, where § C ws.

It is easy to see that each such function has finite domain.
Therefore X is a collection of some finite subsets of wy x ws.
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Let X be the set of the graphs of all strictly decreasing functions
f: S — wi, where § C ws.

It is easy to see that each such function has finite domain.
Therefore X is a collection of some finite subsets of wy x ws.

Since every set can be identified with its characteristic function, we
can view X as a subset of {0,1}“1*“1 We endow X" with the
topology of pointwise convergence, i.e. the topology inherited from
the usual product topology on {0, 1}«1*«1,
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Eberlein compacta

A compact space is called an Eberlein compactum if it is
homeomorphic to a subspace of some Banach space in its weak
topology.
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Eberlein compacta

A compact space is called an Eberlein compactum if it is
homeomorphic to a subspace of some Banach space in its weak
topology.

Theorem (folklore)

Let X be a set and let A be a family consisting of some finite
subsets of X. If K = {xa: A € A} is a closed subspace of {0,1}*
then K is an Eberlein compactum.
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Eberlein compacta

A compact space is called an Eberlein compactum if it is
homeomorphic to a subspace of some Banach space in its weak
topology.

Theorem (folklore)

Let X be a set and let A be a family consisting of some finite
subsets of X. If K = {xa: A € A} is a closed subspace of {0,1}*
then K is an Eberlein compactum.

X is an Eberlein compactum.
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Lemma

For a subset A of w; X w1, we will denote the vertical and
horizontal sections of A at « by

As ={B8: (o, B) € A}, AP = {a: (o, B) € A}
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Lemma

For a subset A of w; X w1, we will denote the vertical and
horizontal sections of A at « by

As ={B8: (o, B) € A}, AP = {a: (o, B) € A}

Let Z be o-ideal consisting of sets A C w; X wi such that for all
but countably many «, |Ay| < Ng and |A%| < No.
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Lemma

For a subset A of w; X w1, we will denote the vertical and
horizontal sections of A at « by

As ={B8: (o, B) € A}, AP = {a: (o, B) € A}

Let Z be o-ideal consisting of sets A C w; X wi such that for all
but countably many «, |Ay| < Ng and |A%| < No.

For any A in the o-ideal T and subsets By, ..., B, of w1 X wy not
in Z, there is a strictly decreasing function f: S — wy, S C wy,
whose graph omits A and intersects each B;, i < n.
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Proof of lemma

Since A € 7, there exists an ordinal o < wy such that

Vo < B <wr |Agl <Ry A AP <Ry
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Proof of lemma

Since A € 7, there exists an ordinal o < wy such that

Vo < B <wr |Agl <Ry A AP <Ry

Bi,...,By € P(w1 X w1)\Z, therefore for any i = 1,..., n there
exist uncountably many ordinals 5 < w; such that

[(Bi)a| =Ry V [(B;)P] = Ry
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Proof of lemma

Since A € 7, there exists an ordinal o < wy such that

Vo < B <wr |Agl <Ry A AP <Ry

Bi,...,By € P(w1 X w1)\Z, therefore for any i = 1,..., n there
exist uncountably many ordinals 5 < w; such that
(Bi)sl = RV [(B))”] = R

Without loss of generality we can assume that |(B;)g| = ¥y for
1<i<kand|(B})? =% fork+1<i<n.
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Proof of lemma

We can inductively define ordinals 81, (2, ..., Bx such that:

o a< i< B <...< B
o the sets (B;)g, are uncountable for 1 </ < k.
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Proof of lemma

We can inductively define ordinals 81, (2, ..., Bx such that:
o a< i< B <...< B
o the sets (B;)g, are uncountable for 1 </ < k.
Analogously, there exist ordinals yx41,Yk+2, - --,¥n such that
O < VYp < Yno1<...<Vks1,
@ the sets (B;) are uncountable for k +1 < i < n.
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Proof of lemma

We can inductively define ordinals 81, (2, ..., Bx such that:
o a< i< B <...< B
o the sets (B;)g, are uncountable for 1 </ < k.
Analogously, there exist ordinals yx41,Yk+2, - --,¥n such that
O < VYp < Yno1<...<Vks1,
@ the sets (B;) are uncountable for k +1 < i < n.
Now we inductively define ordinals 1,72, ..., vk such that:
@ Vi1 < Yk < Vk—1 < ...<mM,
° i€ (Bj)g for1 <i <k,
@ v >supAg for 1 <i < k.
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Proof of lemma

We can inductively define ordinals 81, (2, ..., Bx such that:
o a< i< B <...< B
o the sets (B;)g, are uncountable for 1 </ < k.
Analogously, there exist ordinals yx41,Yk+2, - --,¥n such that
O < VYp < Yno1<...<Vks1,
@ the sets (B;) are uncountable for k +1 < i < n.
Now we inductively define ordinals 1,72, ..., vk such that:
@ Vi1 < Yk < Vk—1 < ...<mM,
° i€ (Bj)g for1 <i <k,
@ v >supAg for 1 <i < k.
Analogously, there exist ordinals Bx11, k12, - .-, 8n such that
@ Bk < Bry1 < Pry2 < ... < Ba,
e e (B)ifork+1<i<n,
@ O >supAYifor k+1<i<n.
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Proof of lemma

It follows that (5;,7i) € B and (5i,7i) ¢ Aforany 1 </ <n.
Moreover

b1 <Po<...<PBpand vy >y >...> Y.
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Proof of lemma

It follows that (5;,7i) € B and (5i,7i) ¢ Aforany 1 </ <n.
Moreover

b1 <Po<...<PBpand vy >y >...> Y.

Therefore the function f: {f1,...,8s} — w1 given by the formula
f(Bi) = i has the desired properties.
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The filter

For any A, By, ..., B, C w1 X wy define

Fa={CeX:ANC=0}
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The filter

For any A, By, ..., B, C w1 X wy define
Fa={CeX: AnC=10}
and

.FA(Bl,BQ,...,Bn):{CEXZAﬂCZQ/\VI’SH B,HC#(Z)}
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The filter

For any A, By, ..., B, C w1 X wy define
Fa={CeX: AnC=10}
and
Fa(B1,Ba,....,B)={CeX: AnNC=0AVi<n BiNnC#0}.

Consider the collection .Z of all 7 C P (w1 X wi) such that
Fa C F for some A€ Z or Fa(By,...,By) for some A€ T and
Bi,....,B, € P(W1 X wl)\I.

Z s a filter.
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The filter

It is clear that .% is closed under supersets.
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The filter

It is clear that .% is closed under supersets.

The lemma implies that .% consists of non-empty sets.
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The filter

It is clear that .% is closed under supersets.
The lemma implies that .% consists of non-empty sets.
Forany AJ/A' €T and By,...,B,, B],...,B,, € P(w1 X w1)\Z
we have AUA" € 7 and
FanNFa = Faon
FaNFa(Bi,...,Bn) = Faua(Bi,...,Bn)
Fa(Bi,...,B)NFa(Bi,...,B.) = Faoa(Bi,...,Bn Bi,...,BL).

Therefore .% is closed under finite intersections.
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The filter

It is clear that .% is closed under supersets.
The lemma implies that .% consists of non-empty sets.
Forany AJ/A' €T and By,...,B,, B],...,B,, € P(w1 X w1)\Z
we have AUA’ € 7 and

FanFa = Faon

Fan ]:A’(Bl, RN Bn) = ]:AUA’(Bla RN Bn)

.FA(Bl, ce Bn) N fA/(Bi7 cey Br/n) = FAUA’(BI; ..., Bnp, B{, ce, B:n)
Therefore . is closed under finite intersections.

Therefore . is a filter.
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Bisequential spaces

A sequence of non-empty subsets Ag, A1, ... of a topological space
X converges to a point x € X if for any neighbourhood U of x
there exists an integer ng such that for any n > ng we have

A, C U.
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Bisequential spaces

A sequence of non-empty subsets Ag, A1, ... of a topological space
X converges to a point x € X if for any neighbourhood U of x
there exists an integer ng such that for any n > ng we have

A, C U.

An ultrafilter U C P (X) is convergent to x € X if every
neighbourhood U of x is an element of U.
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Bisequential spaces

A sequence of non-empty subsets Ag, A1, ... of a topological space
X converges to a point x € X if for any neighbourhood U of x
there exists an integer ng such that for any n > ng we have

A, C U.

An ultrafilter U C P (X) is convergent to x € X if every
neighbourhood U of x is an element of U.

We say that a topological space X is bisequential if for any
ultrafilter U C P (X) convergent to some element x € X there
exists a sequence Uy D U; D U, D ... of elements of U convergent
to x.
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Bisequential spaces

A sequence of non-empty subsets Ag, A1, ... of a topological space
X converges to a point x € X if for any neighbourhood U of x
there exists an integer ng such that for any n > ng we have

A, C U.

An ultrafilter U C P (X) is convergent to x € X if every
neighbourhood U of x is an element of U.

We say that a topological space X is bisequential if for any
ultrafilter U C P (X) convergent to some element x € X there
exists a sequence Uy D U; D U, D ... of elements of U convergent
to x.

We will now prove the following

X is non-bisequential.

Tomasz Ciesla A filter on a collection of finite sets. A non-bisequential Eberlein compactum.



Let % be any ultrafilter extending the filter .%#. For the sake of
contradiction assume that X is bisequential. Then there exists a

decreasing sequence Up, Ui, . . . of elements of % such that for any
basic neighbourhood F, of () there exists a positive integer i such
that U; C Fa.

Tomasz Ciesla A filter on a collection of finite sets. A non-bisequential Eberlein compactum.



Let % be any ultrafilter extending the filter .%#. For the sake of
contradiction assume that X is bisequential. Then there exists a

decreasing sequence Up, Ui, . . . of elements of % such that for any
basic neighbourhood F, of () there exists a positive integer i such
that U; C Fa.

Define for any i € w

A; —{ a,fB) € wr X wi: U C]'-{(a[g)}}
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Let % be any ultrafilter extending the filter .%#. For the sake of
contradiction assume that X is bisequential. Then there exists a

decreasing sequence Up, Ui, . . . of elements of % such that for any
basic neighbourhood F, of () there exists a positive integer i such
that U; C Fa.

Define for any i € w
A; —{ a,fB) €Ewr X wi: Z/[C]:{(a/g)}}

Then |J;

icw A,‘ = w1 X Wi.
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Let % be any ultrafilter extending the filter .%#. For the sake of
contradiction assume that X is bisequential. Then there exists a

decreasing sequence Up, Ui, . . . of elements of % such that for any
basic neighbourhood F, of () there exists a positive integer i such
that U; C Fa.

Define for any i € w
A; —{ a,fB) €Ewr X wi: Z/[C]:{(a/g)}}

Then |J;

icw Ai = w1 X w1. Moreover

Uc (| Fuasy = Fa-
(a,ﬁ)EA,'
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Let % be any ultrafilter extending the filter .%#. For the sake of
contradiction assume that X is bisequential. Then there exists a

decreasing sequence Up, Ui, . . . of elements of % such that for any
basic neighbourhood F, of () there exists a positive integer i such
that U; C Fa.

Define for any i € w

A; —{ a,fB) € wr X wi: U C]'-{(a[g)}}

Then (J;c,, Ai = w1 X w1. Moreover
Uc [ Flas =Fa
(Q,B)GA,
Thus ~7:A,- EU.
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Suppose that A; ¢ Z for some i € w. Then

X\ Fa =FyA) e F Cu,
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Suppose that A; ¢ Z for some i € w. Then
X\ Fa =FyA) e F Cu,

which is a contradiction as % is an ultrafilter and F4, € % .
Therefore A; € Z for any i € w.
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Suppose that A; ¢ Z for some i € w. Then
X\ Fa =FyA) e F Cu,

which is a contradiction as % is an ultrafilter and F4, € % .
Therefore A; € Z for any i € w.
We get
w1 X wy = U A el
i€w

which is a contradiction. Thus X" is non-bisequential.
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The space X was studied before Nyikos' announcement, it
appeared in a paper! by Leiderman and Sokolov as an example of
an Eberlein compactum which is not uniform Eberlein compactum.

! Adequate families of sets and Corson compacts, Commentationes
Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 233-246.
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The space X was studied before Nyikos' announcement, it
appeared in a paper! by Leiderman and Sokolov as an example of
an Eberlein compactum which is not uniform Eberlein compactum.

We can use the non-bisequentiality of X (and other well-known
results) to prove that X is not uniform Eberlein compactum. This
gives a new proof of this fact.

! Adequate families of sets and Corson compacts, Commentationes
Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 233-246.
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Replacing wy by a poset T we get another space X'r.
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Replacing wy by a poset T we get another space X'r.

If T is a tree then X7 is an Eberlein compactum.
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Replacing wy by a poset T we get another space X'r.

If T is a tree then X7 is an Eberlein compactum.

For which trees T is Xt bisequential?
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Replacing wy by a poset T we get another space X'r.

If T is a tree then X7 is an Eberlein compactum.

For which trees T is X1 bisequential?

If T has a branch of length > w; then Xt is non-bisequential.
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Replacing wy by a poset T we get another space X'r.

If T is a tree then X7 is an Eberlein compactum.

For which trees T is Xt bisequential?

If T has a branch of length > w; then Xt is non-bisequential.

Let T be an Aronszajn tree. Is X1 bisequential?
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