Interplay between two generalizations of the first countability

Taras Banakh

(Lviv and Kielce)

Hejnice, 29 January 2017

A topological space X is *first-countable* if at each point x the space X has a countable neighborhood base, i.e., a countable family \mathcal{B}_x of open sets such that for any neighborhood $\mathcal{O}_x \subset X$ of x there is a set $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}_x$.

We shall discuss the interplay between two generalizations of the first-countability.

The first generalization replaces countable neighborhood bases \mathcal{B}_{x} by neighborhood bases $\{B_{p}\}_{p\in P}$ indexed by some partially ordered sets P, more complicated than ω .

A topological space X is *first-countable* if at each point x the space X has a countable neighborhood base, i.e., a countable family \mathcal{B}_x of open sets such that for any neighborhood $\mathcal{O}_x \subset X$ of x there is a set $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}_x$.

We shall discuss the interplay between two generalizations of the first-countability.

The first generalization replaces countable neighborhood bases \mathcal{B}_{x} by neighborhood bases $\{B_{p}\}_{p\in P}$ indexed by some partially ordered sets P, more complicated than ω .

A topological space X is *first-countable* if at each point x the space X has a countable neighborhood base, i.e., a countable family \mathcal{B}_x of open sets such that for any neighborhood $\mathcal{O}_x \subset X$ of x there is a set $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}_x$.

We shall discuss the interplay between two generalizations of the first-countability.

The first generalization replaces countable neighborhood bases \mathcal{B}_{x} by neighborhood bases $\{B_{p}\}_{p\in P}$ indexed by some partially ordered sets P, more complicated than ω .

A topological space X is *first-countable* if at each point x the space X has a countable neighborhood base, i.e., a countable family \mathcal{B}_x of open sets such that for any neighborhood $\mathcal{O}_x \subset X$ of x there is a set $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}_x$.

We shall discuss the interplay between two generalizations of the first-countability.

The first generalization replaces countable neighborhood bases \mathcal{B}_{x} by neighborhood bases $\{B_{p}\}_{p\in P}$ indexed by some partially ordered sets P, more complicated than ω .

A topological space X is *first-countable* if at each point x the space X has a countable neighborhood base, i.e., a countable family \mathcal{B}_x of open sets such that for any neighborhood $\mathcal{O}_x \subset X$ of x there is a set $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}_x$.

We shall discuss the interplay between two generalizations of the first-countability.

The first generalization replaces countable neighborhood bases \mathcal{B}_{x} by neighborhood bases $\{B_{p}\}_{p\in P}$ indexed by some partially ordered sets P, more complicated than ω .

Let (P, \leq) be a partially ordered set. A neighborhood base \mathcal{B}_x at a point x of a topological space X is called a *neighborhood P-base* if \mathcal{B}_x admits a monotone enumeration $\mathcal{B}_x = \{B_p\}_{p \in P}$, which means that $B_q \subset B_p$ for any $p \leq q$ in P.

A topological space X is first-countable if and only if at each point $x \in X$ the space X has a neighborhood ω -base \mathcal{B}_x .

Problem

What can be said about spaces possessing a neighborhood ω^{ω} -base at each point?

Here ω^{ω} is the set of all functions from ω to ω , endowed with the coordinatewise partial order.

In literature ω^{ω} -bases are called **G**-bases.

Let (P, \leq) be a partially ordered set. A neighborhood base \mathcal{B}_x at a point x of a topological space X is called a *neighborhood P-base* if \mathcal{B}_x admits a monotone enumeration $\mathcal{B}_x = \{B_p\}_{p \in P}$, which means that $B_q \subset B_p$ for any $p \leq q$ in P.

A topological space X is first-countable if and only if at each point $x \in X$ the space X has a neighborhood ω -base \mathcal{B}_x .

Problem

What can be said about spaces possessing a neighborhood ω^{ω} -base at each point?

Here ω^{ω} is the set of all functions from ω to ω , endowed with the coordinatewise partial order.

In literature ω^{ω} -bases are called **G**-bases.

Let (P, \leq) be a partially ordered set. A neighborhood base \mathcal{B}_x at a point x of a topological space X is called a *neighborhood* P-base if \mathcal{B}_x admits a monotone enumeration $\mathcal{B}_x = \{B_p\}_{p \in P}$, which means that $B_q \subset B_p$ for any $p \leq q$ in P.

A topological space X is first-countable if and only if at each point $x \in X$ the space X has a neighborhood ω -base \mathcal{B}_x .

Problem

What can be said about spaces possessing a neighborhood ω^{ω} -base at each point?

Here ω^{ω} is the set of all functions from ω to ω , endowed with the coordinatewise partial order.

In literature ω^{ω} -bases are called \mathfrak{G} -bases.

Let (P, \leq) be a partially ordered set. A neighborhood base \mathcal{B}_x at a point x of a topological space X is called a *neighborhood* P-base if \mathcal{B}_x admits a monotone enumeration $\mathcal{B}_x = \{B_p\}_{p \in P}$, which means that $B_q \subset B_p$ for any $p \leq q$ in P.

A topological space X is first-countable if and only if at each point $x \in X$ the space X has a neighborhood ω -base \mathcal{B}_x .

Problem

What can be said about spaces possessing a neighborhood ω^{ω} -base at each point? Here ω^{ω} is the set of all functions from ω to ω , endowed with the coordinatewise partial order.

In literature ω^{ω} -bases are called \mathfrak{G} -bases.

Let (P, \leq) be a partially ordered set. A neighborhood base \mathcal{B}_x at a point x of a topological space X is called a *neighborhood* P-base if \mathcal{B}_x admits a monotone enumeration $\mathcal{B}_x = \{B_p\}_{p \in P}$, which means that $B_q \subset B_p$ for any $p \leq q$ in P.

A topological space X is first-countable if and only if at each point $x \in X$ the space X has a neighborhood ω -base \mathcal{B}_x .

Problem

What can be said about spaces possessing a neighborhood ω^{ω} -base at each point? Here ω^{ω} is the set of all functions from ω to ω , endowed with the coordinatewise partial order.

In literature ω^{ω} -bases are called \mathfrak{G} -bases.

Spaces with a neighborhood $\omega^\omega\text{-}\mathsf{base}$ need not be first-countable.

Example

The countable box-product $\Box_{n \in \omega} X_n$ of first-countable spaces has a neighborhood ω^{ω} -base at each point.

Spaces with a neighborhood $\omega^\omega\text{-}\mathsf{base}$ need not be first-countable.

Example

The countable box-product $\Box_{n \in \omega} X_n$ of first-countable spaces has a neighborhood ω^{ω} -base at each point.

A family $\mathcal N$ of subsets of a topological space X is called

• a cs^{*}-network at a point $x \in X$ if for any neighborhood $O_x \subset X$ of x and any sequence $\{x_n\}_{n \in \omega} \subset X$ convergent to x there exists a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and N contains infinitely many points x_n , $n \in \omega$;

an s*-network at a point x ∈ X if for any neighborhood
O_x ⊂ X of x and any sequence {x_n}_{n∈ω} ⊂ X accumulating at x there exists a set N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n, n ∈ ω.

neighborhood base at $x \Rightarrow s^*$ -network at $x \Rightarrow cs^*$ -network at x

A family $\mathcal N$ of subsets of a topological space X is called

- a cs*-*network* at a point $x \in X$ if for any neighborhood $O_x \subset X$ of x and any sequence $\{x_n\}_{n \in \omega} \subset X$ convergent to x there exists a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and N contains infinitely many points x_n , $n \in \omega$;
- an s*-network at a point $x \in X$ if for any neighborhood $O_x \subset X$ of x and any sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x there exists a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and N contains infinitely many points x_n , $n \in \omega$.

neighborhood base at $x \Rightarrow s^*$ -network at $x \Rightarrow cs^*$ -network at x

A family $\mathcal N$ of subsets of a topological space X is called

- a cs*-*network* at a point $x \in X$ if for any neighborhood $O_x \subset X$ of x and any sequence $\{x_n\}_{n \in \omega} \subset X$ convergent to x there exists a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and N contains infinitely many points x_n , $n \in \omega$;
- an s*-network at a point $x \in X$ if for any neighborhood $O_x \subset X$ of x and any sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x there exists a set $N \in \mathcal{N}$ such that $x \in N \subset O_x$ and N contains infinitely many points x_n , $n \in \omega$.

neighborhood base at $x \Rightarrow s^*$ -network at $x \Rightarrow cs^*$ -network at x

Definition

A topological space X has

- has countable character if at each point x ∈ X the space X has a countable neighborhood base B_x;
- has countable cs*-character if at each point x ∈ X the space X has a countable cs*-network N_x;
- has countable s*-character if at each point x ∈ X the space X has a countable s*-network N_x.

first-countable \Leftrightarrow countable \Rightarrow countable

Definition

A topological space X has

- has countable character if at each point x ∈ X the space X has a countable neighborhood base B_x;
- has countable cs*-character if at each point x ∈ X the space X has a countable cs*-network N_x;

 has countable s*-character if at each point x ∈ X the space X has a countable s*-network N_x.

first-countable \Leftrightarrow countable \Rightarrow s*-character \Rightarrow countable \Leftrightarrow countable \Rightarrow counta

Definition

A topological space X has

- has countable character if at each point x ∈ X the space X has a countable neighborhood base B_x;
- has countable cs*-character if at each point x ∈ X the space X has a countable cs*-network N_x;
- has countable s^{*}-character if at each point x ∈ X the space X has a countable s^{*}-network N_x.

first-countable \Leftrightarrow countable \Rightarrow s*-character \Rightarrow countable \Leftrightarrow countable \Rightarrow counta

Definition

A topological space X has

- has countable character if at each point x ∈ X the space X has a countable neighborhood base B_x;
- has countable cs*-character if at each point x ∈ X the space X has a countable cs*-network N_x;
- has countable s*-character if at each point x ∈ X the space X has a countable s*-network N_x.

first-countable \Leftrightarrow countable \Rightarrow s*-character \Rightarrow countable \Rightarrow counta

Definition

A topological space X has

- has countable character if at each point x ∈ X the space X has a countable neighborhood base B_x;
- has countable cs*-character if at each point x ∈ X the space X has a countable cs*-network N_x;
- has countable s*-character if at each point x ∈ X the space X has a countable s*-network N_x.

first-countable \Leftrightarrow countable \Rightarrow s*-character \Rightarrow countable \Leftrightarrow countable \Rightarrow s*-character \Rightarrow countable \Rightarrow cou

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

Proof.

Let $\{U_{\alpha}\}_{\alpha\in\omega^{\omega}}$ be a neighborhood ω^{ω} -base (so $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω}). For a subset $A \subset \omega^{\omega}$ put $U_{A} := \bigcap_{\alpha\in A} U_{\alpha}$. Observe that ω^{ω} carries a natural Polish topology generated by the countable base $\{\uparrow \alpha\}_{\alpha\in\omega^{<\omega}}$ indexed by the set $\omega^{<\omega} = \bigcup_{n\in\omega} \omega^{n}$ and consisting of clopen sets $\uparrow \alpha = \{\beta \in \omega^{\omega} : \beta | n = \alpha\}$. The following lemma completes the proof of the theorem.

Lemma 1

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

Proof.

Let $\{U_{\alpha}\}_{\alpha\in\omega^{\omega}}$ be a neighborhood ω^{ω} -base (so $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω}). For a subset $A \subset \omega^{\omega}$ put $U_{A} := \bigcap_{\alpha\in A} U_{\alpha}$. Observe that ω^{ω} carries a natural Polish topology generated by the countable base $\{\uparrow \alpha\}_{\alpha\in\omega^{<\omega}}$ indexed by the set $\omega^{<\omega} = \bigcup_{n\in\omega} \omega^{n}$ and consisting of clopen sets $\uparrow \alpha = \{\beta \in \omega^{\omega} : \beta | n = \alpha\}$. The following lemma completes the proof of the theorem.

Lemma 1

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

Proof.

Let $\{U_{\alpha}\}_{\alpha\in\omega^{\omega}}$ be a neighborhood ω^{ω} -base (so $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω}). For a subset $A \subset \omega^{\omega}$ put $U_A := \bigcap_{\alpha\in A} U_{\alpha}$. Observe that ω^{ω} carries a natural Polish topology generated by the countable base $\{\uparrow \alpha\}_{\alpha\in\omega^{<\omega}}$ indexed by the set $\omega^{<\omega} = \bigcup_{n\in\omega} \omega^n$ and consisting of clopen sets $\uparrow \alpha = \{\beta \in \omega^{\omega} : \beta | n = \alpha\}$. The following lemma completes the proof of the theorem.

Lemma 1

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

Proof.

Let $\{U_{\alpha}\}_{\alpha\in\omega^{\omega}}$ be a neighborhood ω^{ω} -base (so $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω}). For a subset $A \subset \omega^{\omega}$ put $U_A := \bigcap_{\alpha\in A} U_{\alpha}$. Observe that ω^{ω} carries a natural Polish topology generated by the countable base $\{\uparrow \alpha\}_{\alpha\in\omega^{<\omega}}$ indexed by the set $\omega^{<\omega} = \bigcup_{n\in\omega} \omega^n$ and consisting of clopen sets $\uparrow \alpha = \{\beta \in \omega^{\omega} : \beta | n = \alpha\}$. The following lemma completes the proof of the theorem

Lemma 1

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

Proof.

Let $\{U_{\alpha}\}_{\alpha\in\omega^{\omega}}$ be a neighborhood ω^{ω} -base (so $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω}). For a subset $A \subset \omega^{\omega}$ put $U_A := \bigcap_{\alpha\in A} U_{\alpha}$. Observe that ω^{ω} carries a natural Polish topology generated by the countable base $\{\uparrow \alpha\}_{\alpha\in\omega^{<\omega}}$ indexed by the set $\omega^{<\omega} = \bigcup_{n\in\omega} \omega^n$ and consisting of clopen sets $\uparrow \alpha = \{\beta \in \omega^{\omega} : \beta | n = \alpha\}$. The following lemma completes the proof of the theorem.

Lemma 1

The countable family $\{U_{\uparrow\alpha}\}_{\alpha\in\omega^{<\omega}}$ is an s^{*}-network at x.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Lemma 1

The countable family $\{U_{\uparrow\alpha}\}_{\alpha\in\omega^{<\omega}}$ is an s^{*}-network at x.

Proof.

Given a neighborhood $O_x \subset X$ of x and a sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x, we need to find $\alpha \in \omega^{<\omega}$ such that $U_{\uparrow \alpha} \subset O_x$ and $U_{\uparrow \alpha}$ contains infinitely many points x_n , $n \in \omega$. Since $\{U_\alpha\}_{\alpha \in \omega^{\omega}}$ is a neighborhood base at x, there exists $\alpha \in \omega^{\omega}$ such that $U_\alpha \subset O_x$. To finish the proof of Lemma 1, it suffices to prove another

Lemma 2

Lemma 1

The countable family $\{U_{\uparrow\alpha}\}_{\alpha\in\omega^{<\omega}}$ is an s^{*}-network at x.

Proof.

Given a neighborhood $O_x \subset X$ of x and a sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x, we need to find $\alpha \in \omega^{<\omega}$ such that $U_{\uparrow \alpha} \subset O_x$ and $U_{\uparrow \alpha}$ contains infinitely many points x_n , $n \in \omega$. Since $\{U_\alpha\}_{\alpha \in \omega^{\omega}}$ is a neighborhood base at x, there exists $\alpha \in \omega^{\omega}$ such that $U_\alpha \subset O_x$. To finish the proof of Lemma 1, it suffices to prove another

Lemma 2

Lemma 1

The countable family $\{U_{\uparrow\alpha}\}_{\alpha\in\omega^{<\omega}}$ is an s^{*}-network at x.

Proof.

Given a neighborhood $O_x \subset X$ of x and a sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x, we need to find $\alpha \in \omega^{<\omega}$ such that $U_{\uparrow \alpha} \subset O_x$ and $U_{\uparrow \alpha}$ contains infinitely many points x_n , $n \in \omega$. Since $\{U_\alpha\}_{\alpha \in \omega^{\omega}}$ is a neighborhood base at x, there exists $\alpha \in \omega^{\omega}$ such that $U_{\alpha} \subset O_x$.

To finish the proof of Lemma 1, it suffices to prove another

Lemma 2

Lemma 1

The countable family $\{U_{\uparrow\alpha}\}_{\alpha\in\omega^{<\omega}}$ is an s^{*}-network at x.

Proof.

Given a neighborhood $O_x \subset X$ of x and a sequence $\{x_n\}_{n \in \omega} \subset X$ accumulating at x, we need to find $\alpha \in \omega^{<\omega}$ such that $U_{\uparrow \alpha} \subset O_x$ and $U_{\uparrow \alpha}$ contains infinitely many points x_n , $n \in \omega$. Since $\{U_\alpha\}_{\alpha \in \omega^{\omega}}$ is a neighborhood base at x, there exists $\alpha \in \omega^{\omega}$ such that $U_\alpha \subset O_x$. To finish the proof of Lemma 1, it suffices to prove another

Lemma 2

Lemma 2

There exists $k \in \omega$ such that the set $U_{\uparrow \alpha | k} := \bigcap_{\beta \in \uparrow \alpha | k} U_{\beta}$ contains infinitely many points x_n , $n \in \omega$.

Proof.

Without loss of generality we can assume that $x_n \neq x$ for all $n \in \omega$. For every neighborhood $U \subset X$ of x consider the set $F(U) = \{n \in \omega : x_n \in U\} \subset \omega$. It follows that

 $\mathcal{F} := \{F(U) : U \text{ is a neighborhood of } x\}$

is a free filter on ω and the family $\{F(U_{\alpha})\}_{\alpha\in\omega^{\omega}}$ is a monotone base for \mathcal{F} . We claim that the filter \mathcal{F} is analytic (as a subspace of the power-set $\mathcal{P}(\omega)$, endowed with the natural compact metrizable topology).

Lemma 2

There exists $k \in \omega$ such that the set $U_{\uparrow \alpha | k} := \bigcap_{\beta \in \uparrow \alpha | k} U_{\beta}$ contains infinitely many points x_n , $n \in \omega$.

Proof.

Without loss of generality we can assume that $x_n \neq x$ for all $n \in \omega$. For every neighborhood $U \subset X$ of x consider the set $F(U) = \{n \in \omega : x_n \in U\} \subset \omega$. It follows that

 $\mathcal{F} := \{F(U) : U \text{ is a neighborhood of } x\}$

is a free filter on ω and the family $\{F(U_{\alpha})\}_{\alpha\in\omega^{\omega}}$ is a monotone base for \mathcal{F} . We claim that the filter \mathcal{F} is analytic (as a subspace of the power-set $\mathcal{P}(\omega)$, endowed with the natural compact metrizable topology).

Lemma 2

There exists $k \in \omega$ such that the set $U_{\uparrow \alpha | k} := \bigcap_{\beta \in \uparrow \alpha | k} U_{\beta}$ contains infinitely many points x_n , $n \in \omega$.

Proof.

Without loss of generality we can assume that $x_n \neq x$ for all $n \in \omega$. For every neighborhood $U \subset X$ of x consider the set $F(U) = \{n \in \omega : x_n \in U\} \subset \omega$. It follows that

 $\mathcal{F} := \{F(U) : U \text{ is a neighborhood of } x\}$

is a free filter on ω and the family $\{F(U_{\alpha})\}_{\alpha\in\omega^{\omega}}$ is a monotone base for \mathcal{F} . We claim that the filter \mathcal{F} is analytic (as a subspace of the power-set $\mathcal{P}(\omega)$, endowed with the natural compact metrizable topology).

Lemma 2

There exists $k \in \omega$ such that the set $U_{\uparrow \alpha | k} := \bigcap_{\beta \in \uparrow \alpha | k} U_{\beta}$ contains infinitely many points x_n , $n \in \omega$.

Proof.

Without loss of generality we can assume that $x_n \neq x$ for all $n \in \omega$. For every neighborhood $U \subset X$ of x consider the set $F(U) = \{n \in \omega : x_n \in U\} \subset \omega$. It follows that

 $\mathcal{F} := \{F(U) : U \text{ is a neighborhood of } x\}$

is a free filter on ω and the family $\{F(U_{\alpha})\}_{\alpha \in \omega^{\omega}}$ is a monotone base for \mathcal{F} . We claim that the filter \mathcal{F} is analytic (as a subspace of the power-set $\mathcal{P}(\omega)$, endowed with the natural compact metrizable topology).

Lemma 2

There exists $k \in \omega$ such that the set $U_{\uparrow \alpha | k} := \bigcap_{\beta \in \uparrow \alpha | k} U_{\beta}$ contains infinitely many points x_n , $n \in \omega$.

Proof.

Without loss of generality we can assume that $x_n \neq x$ for all $n \in \omega$. For every neighborhood $U \subset X$ of x consider the set $F(U) = \{n \in \omega : x_n \in U\} \subset \omega$. It follows that

 $\mathcal{F} := \{F(U) : U \text{ is a neighborhood of } x\}$

is a free filter on ω and the family $\{F(U_{\alpha})\}_{\alpha\in\omega^{\omega}}$ is a monotone base for \mathcal{F} . We claim that the filter \mathcal{F} is analytic (as a subspace of the power-set $\mathcal{P}(\omega)$, endowed with the natural compact metrizable topology).

A topological space X is called analytic if X is continuous image of ω^{ω} .

Known Fact

A metrizable separable space X is analytic if and only if X has a compact resolution, which is a family $(K_{\alpha})_{\alpha \in \omega^{\omega}}$ of compact subsets of X such that $X = \bigcup_{\alpha \in \omega^{\omega}} K_{\alpha}$ and $K_{\alpha} \subset K_{\beta}$ for all $\alpha \leq \beta$ in ω^{ω} .

A topological space X is called analytic if X is continuous image of ω^{ω} .

Known Fact

A metrizable separable space X is analytic if and only if X has a compact resolution, which is a family $(K_{\alpha})_{\alpha \in \omega^{\omega}}$ of compact subsets of X such that $X = \bigcup_{\alpha \in \omega^{\omega}} K_{\alpha}$ and $K_{\alpha} \subset K_{\beta}$ for all $\alpha \leq \beta$ in ω^{ω} .

Observe that for every $\alpha \in \omega^{\omega}$ the set $\uparrow F(U_{\alpha}) := \{F \subset \omega : F(U_{\alpha}) \subset F\}$ is a compact subset of \mathcal{F} and moreover $\mathcal{F} = \bigcup_{\alpha \in \omega^{\omega}} \uparrow F(U_{\alpha})$, where $\uparrow F(U_{\alpha}) \subset \uparrow F(U_{\beta})$ for any $\alpha \leq \beta$ in ω^{ω} .

So, $(\uparrow F(U_{\alpha}))_{\alpha \in \omega^{\omega}}$ is a compact resolution of the subspace $\mathcal{F} \subset \mathcal{P}(\omega)$ and hence the filter \mathcal{F} is analytic and meager.

Observe that for every $\alpha \in \omega^{\omega}$ the set $\uparrow F(U_{\alpha}) := \{F \subset \omega : F(U_{\alpha}) \subset F\}$ is a compact subset of \mathcal{F} and moreover $\mathcal{F} = \bigcup_{\alpha \in \omega^{\omega}} \uparrow F(U_{\alpha})$, where $\uparrow F(U_{\alpha}) \subset \uparrow F(U_{\beta})$ for any $\alpha \leq \beta$ in ω^{ω} .

So, $(\uparrow F(U_{\alpha}))_{\alpha \in \omega^{\omega}}$ is a compact resolution of the subspace $\mathcal{F} \subset \mathcal{P}(\omega)$ and hence the filter \mathcal{F} is analytic and meager.

Observe that for every $\alpha \in \omega^{\omega}$ the set $\uparrow F(U_{\alpha}) := \{F \subset \omega : F(U_{\alpha}) \subset F\}$ is a compact subset of \mathcal{F} and moreover $\mathcal{F} = \bigcup_{\alpha \in \omega^{\omega}} \uparrow F(U_{\alpha})$, where $\uparrow F(U_{\alpha}) \subset \uparrow F(U_{\beta})$ for any $\alpha \leq \beta$ in ω^{ω} .

So, $(\uparrow F(U_{\alpha}))_{\alpha \in \omega^{\omega}}$ is a compact resolution of the subspace $\mathcal{F} \subset \mathcal{P}(\omega)$ and hence the filter \mathcal{F} is analytic and meager.

Observe that for every $\alpha \in \omega^{\omega}$ the set $\uparrow F(U_{\alpha}) := \{F \subset \omega : F(U_{\alpha}) \subset F\}$ is a compact subset of \mathcal{F} and moreover $\mathcal{F} = \bigcup_{\alpha \in \omega^{\omega}} \uparrow F(U_{\alpha})$, where $\uparrow F(U_{\alpha}) \subset \uparrow F(U_{\beta})$ for any $\alpha \leq \beta$ in ω^{ω} .

So, $(\uparrow F(U_{\alpha}))_{\alpha \in \omega^{\omega}}$ is a compact resolution of the subspace $\mathcal{F} \subset \mathcal{P}(\omega)$ and hence the filter \mathcal{F} is analytic and meager.

Observe that for every $\alpha \in \omega^{\omega}$ the set $\uparrow F(U_{\alpha}) := \{F \subset \omega : F(U_{\alpha}) \subset F\}$ is a compact subset of \mathcal{F} and moreover $\mathcal{F} = \bigcup_{\alpha \in \omega^{\omega}} \uparrow F(U_{\alpha})$, where $\uparrow F(U_{\alpha}) \subset \uparrow F(U_{\beta})$ for any $\alpha \leq \beta$ in ω^{ω} .

So, $(\uparrow F(U_{\alpha}))_{\alpha \in \omega^{\omega}}$ is a compact resolution of the subspace $\mathcal{F} \subset \mathcal{P}(\omega)$ and hence the filter \mathcal{F} is analytic and meager.

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite.

 $\beta \geq \beta_k$ and hence $U_\beta \subset U_{\beta_k}$ for all $k \in \omega$.

Then for any $n \in \bigcup_{k \in \omega} \varphi^{-1}(k)$ we get $x_n \notin U_\beta$ and hence $\bigcup_{k \in \omega} \varphi^{-1}(k)$ is disjoint with the set $F(U_\beta)$, which implies that $\varphi(F(U_\beta))$ is disjoint with the set $\{y_k\}_{k \in \omega}$ and cannot be cofinite in ω . But this contradicts the choice of φ .

< 口 > < 同 > < 三 > < 三

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite.

Choose an increasing number sequence $(y_k)_{k\in\omega} \in \omega^{\omega}$ such that $\varphi^{-1}(y_k) \cap J_k = \emptyset$ for all $k \in \omega$.

For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_{k,n}}$ for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n \mid k = \alpha \mid k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$. Now consider the function $\beta \in \omega^{\omega}$ defined by $\beta(i) = \max\{\beta_k(i) : k \le i+1\}$ for $i \in \omega$. It can be shown that $\beta \ge \beta_k$ and hence $U_\beta \subset U_{\beta_k}$ for all $k \in \omega$.

Then for any $n \in \bigcup_{k \in \omega} \varphi^{-1}(k)$ we get $x_n \notin U_\beta$ and hence $\bigcup_{k \in \omega} \varphi^{-1}(k)$ is disjoint with the set $F(U_\beta)$, which implies that $\varphi(F(U_\beta))$ is disjoint with the set $\{y_k\}_{k \in \omega}$ and cannot be cofinite in ω . But this contradicts the choice of φ .

< 口 > < 同 > < 三 > < 三

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k \in \omega} \in \omega^{\omega}$ such that $\varphi^{-1}(y_k) \cap J_k = \emptyset$ for all $k \in \omega$.

For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_{k,n}}$ for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n \mid k = \alpha \mid k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$. Now consider the function $\beta \in \omega^{\omega}$ defined by $\beta(i) = \max\{\beta_k(i) : k \leq i+1\}$ for $i \in \omega$. It can be shown that $\beta \geq \beta_k$ and hence $U_\beta \subset U_{\beta_k}$ for all $k \in \omega$.

Then for any $n \in \bigcup_{k \in \omega} \varphi^{-1}(k)$ we get $x_n \notin U_\beta$ and hence $\bigcup_{k \in \omega} \varphi^{-1}(k)$ is disjoint with the set $F(U_\beta)$, which implies that $\varphi(F(U_\beta))$ is disjoint with the set $\{y_k\}_{k \in \omega}$ and cannot be cofinite in ω . But this contradicts the choice of φ .

< 口 > < 同 > < 三 > < 三

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k\in\omega}\in\omega^{\omega}$ such that $\varphi^{-1}(\mathbf{y}_k) \cap J_k = \emptyset$ for all $k \in \omega$. For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_k}$, for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n | k = \alpha | k$. Then for

・ロト ・同ト ・ヨト ・ヨト

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k \in \omega} \in \omega^{\omega}$ such that $\varphi^{-1}(\mathbf{y}_k) \cap J_k = \emptyset$ for all $k \in \omega$. For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_k}$, for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n | k = \alpha | k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$.

・ロト ・同ト ・ヨト ・ヨト

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k\in\omega}\in\omega^{\omega}$ such that $\varphi^{-1}(\mathbf{y}_k) \cap J_k = \emptyset$ for all $k \in \omega$. For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_k}$, for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n | k = \alpha | k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$. Now consider the function $\beta \in \omega^{\omega}$ defined by $\beta(i) = \max\{\beta_k(i) : k \le i+1\}$ for $i \in \omega$. It can be shown that

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k\in\omega}\in\omega^{\omega}$ such that $\varphi^{-1}(\mathbf{y}_k) \cap J_k = \emptyset$ for all $k \in \omega$. For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_k}$, for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n | k = \alpha | k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$. Now consider the function $\beta \in \omega^{\omega}$ defined by $\beta(i) = \max\{\beta_k(i) : k \le i+1\}$ for $i \in \omega$. It can be shown that $\beta \geq \beta_k$ and hence $U_\beta \subset U_{\beta_k}$ for all $k \in \omega$.

Then for any $n \in \bigcup_{k \in \omega} \varphi^{-1}(k)$ we get $x_n \notin U_\beta$ and hence $\bigcup_{k \in \omega} \varphi^{-1}(k)$ is disjoint with the set $F(U_\beta)$, which implies that $\varphi(F(U_\beta))$ is disjoint with the set $\{y_k\}_{k \in \omega}$ and cannot be cofinite in ω . But this contradicts the choice of φ .

同 と く ヨ と く ヨ と

We need to prove that for some $k \in \omega$ the set $U_{\uparrow \alpha \mid k}$ contains infinitely many points x_n , $n \in \omega$. To derive a contradiction, assume that for every $k \in \omega$ the set $J_k = \{n \in \omega : x_n \in U_{\uparrow \alpha \mid k}\}$ is finite. Choose an increasing number sequence $(y_k)_{k \in \omega} \in \omega^{\omega}$ such that $\varphi^{-1}(\mathbf{y}_k) \cap J_k = \emptyset$ for all $k \in \omega$. For every $k \in \omega$ and $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\uparrow \alpha \mid k}$ and hence $x_n \notin U_{\beta_{k,n}}$ for some $\beta_{k,n} \in \omega^{\omega}$ with $\beta_n | k = \alpha | k$. Then for $\beta_k = \max\{\beta_{k,n} : n \in \varphi^{-1}(k)\}$ and all $n \in \varphi^{-1}(k)$ we get $x_n \notin U_{\beta_k}$. Now consider the function $\beta \in \omega^{\omega}$ defined by $\beta(i) = \max\{\beta_k(i) : k \le i+1\}$ for $i \in \omega$. It can be shown that $\beta \geq \beta_k$ and hence $U_\beta \subset U_{\beta_k}$ for all $k \in \omega$. Then for any $n \in \bigcup_{k \in \omega} \varphi^{-1}(k)$ we get $x_n \notin U_\beta$ and hence $\bigcup_{k \in \omega} \varphi^{-1}(k)$ is disjoint with the set $F(U_{\beta})$, which implies that $\varphi(F(U_{\beta}))$ is disjoint with the set $\{y_k\}_{k \in \omega}$ and cannot be cofinite in ω . But this contradicts the choice of φ .

Thus we have proved

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel'ski theorem)

Each countably tight Hausdorff Lindelöf space X with a neighborhood ω^{ω} -base at each point has cardinality $|X| \leq \mathfrak{c}$.

This corollary is a consequence of Main Theorem and

Theorem

Each countably tight Hausdorff space X with countable s*-character has cardinality $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Thus we have proved

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel'ski theorem)

Each countably tight Hausdorff Lindelöf space X with a neighborhood ω^{ω} -base at each point has cardinality $|X| \leq \mathfrak{c}$.

This corollary is a consequence of Main Theorem and

Theorem

Each countably tight Hausdorff space X with countable s*-character has cardinality $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Thus we have proved

Theorem

If a topological space X has a neighborhood ω^{ω} -base at a point $x \in X$, then X has a countable s^{*}-network at x.

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel'ski theorem)

Each countably tight Hausdorff Lindelöf space X with a neighborhood ω^{ω} -base at each point has cardinality $|X| \leq \mathfrak{c}$.

This corollary is a consequence of Main Theorem and

Theorem

Each countably tight Hausdorff space X with countable s^{*}-character has cardinality $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

More information on ω^{ω} -bases and s^{*}-networks can be found in the paper-book:

T.Banakh, Topological spaces with an ω^{ω} -base, 105 pages (http://arxiv.org/abs/1607.07978).

Thank You!

Děkuji!

T.Banakh Generalizations of the first-countability

御下 ・ヨト ・ヨト

æ

Thank You!

Děkuji!

T.Banakh Generalizations of the first-countability

æ

_ৰ ≣ ≯

⊸ ≣ ⊁