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First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family Bx of open sets such that for any neighborhood Ox ⊂ X of
x there is a set B ∈ Bx such that x ∈ B ⊂ Ox .

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases Bx
by neighborhood bases {Bp}p∈P indexed by some partially ordered
sets P, more complicated than ω.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.

T.Banakh Generalizations of the first-countability



First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family Bx of open sets such that for any neighborhood Ox ⊂ X of
x there is a set B ∈ Bx such that x ∈ B ⊂ Ox .

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases Bx
by neighborhood bases {Bp}p∈P indexed by some partially ordered
sets P, more complicated than ω.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.

T.Banakh Generalizations of the first-countability



First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family Bx of open sets such that for any neighborhood Ox ⊂ X of
x there is a set B ∈ Bx such that x ∈ B ⊂ Ox .

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases Bx
by neighborhood bases {Bp}p∈P indexed by some partially ordered
sets P, more complicated than ω.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.

T.Banakh Generalizations of the first-countability



First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family Bx of open sets such that for any neighborhood Ox ⊂ X of
x there is a set B ∈ Bx such that x ∈ B ⊂ Ox .

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases Bx
by neighborhood bases {Bp}p∈P indexed by some partially ordered
sets P, more complicated than ω.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.

T.Banakh Generalizations of the first-countability



First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family Bx of open sets such that for any neighborhood Ox ⊂ X of
x there is a set B ∈ Bx such that x ∈ B ⊂ Ox .

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases Bx
by neighborhood bases {Bp}p∈P indexed by some partially ordered
sets P, more complicated than ω.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.

T.Banakh Generalizations of the first-countability



Neighborhood P-bases

Definition

Let (P,≤) be a partially ordered set. A neighborhood base Bx at a
point x of a topological space X is called a neighborhood P-base if
Bx admits a monotone enumeration Bx = {Bp}p∈P , which means
that Bq ⊂ Bp for any p ≤ q in P.

A topological space X is first-countable if and only if at each point
x ∈ X the space X has a neighborhood ω-base Bx .

Problem

What can be said about spaces possessing a neighborhood ωω-base
at each point?
Here ωω is the set of all functions from ω to ω, endowed with the
coordinatewise partial order.

In literature ωω-bases are called G-bases.
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Box-products

Spaces with a neighborhood ωω-base need not be first-countable.

Example

The countable box-product �n∈ωXn of first-countable spaces has a
neighborhood ωω-base at each point.
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cs∗ and s∗-networks

Definition

A family N of subsets of a topological space X is called

a cs∗-network at a point x ∈ X if for any neighborhood
Ox ⊂ X of x and any sequence {xn}n∈ω ⊂ X convergent to x
there exists a set N ∈ N such that x ∈ N ⊂ Ox and N
contains infinitely many points xn, n ∈ ω;

an s∗-network at a point x ∈ X if for any neighborhood
Ox ⊂ X of x and any sequence {xn}n∈ω ⊂ X accumulating at
x there exists a set N ∈ N such that x ∈ N ⊂ Ox and N
contains infinitely many points xn, n ∈ ω.

neighborhood base at x ⇒ s∗-network at x ⇒ cs∗-network at x
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Network generalizations of first-countability

Definition

A topological space X has

has countable character if at each point x ∈ X the space X
has a countable neighborhood base Bx ;

has countable cs∗-character if at each point x ∈ X the space
X has a countable cs∗-network Nx ;

has countable s∗-character if at each point x ∈ X the space X
has a countable s∗-network Nx .

first-countable⇔ countable
character ⇒

countable
s∗-character ⇒

countable
cs∗-character

What is the relation of these properties to ωω-bases?
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Main Theorem

Theorem

If a topological space X has a neighborhood ωω-base at a point
x ∈ X , then X has a countable s∗-network at x.

Proof.

Let {Uα}α∈ωω be a neighborhood ωω-base
(so Uβ ⊂ Uα for all α ≤ β in ωω).
For a subset A ⊂ ωω put UA :=

⋂
α∈A Uα.

Observe that ωω carries a natural Polish topology generated by the
countable base {↑α}α∈ω<ω indexed by the set ω<ω =

⋃
n∈ω ω

n and
consisting of clopen sets ↑α = {β ∈ ωω : β|n = α}.
The following lemma completes the proof of the theorem.

Lemma 1

The countable family {U↑α}α∈ω<ω is an s∗-network at x.
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Proof of Lemma 1

Lemma 1

The countable family {U↑α}α∈ω<ω is an s∗-network at x.

Proof.

Given a neighborhood Ox ⊂ X of x and a sequence {xn}n∈ω ⊂ X
accumulating at x , we need to find α ∈ ω<ω such that U↑α ⊂ Ox

and U↑α contains infinitely many points xn, n ∈ ω.
Since {Uα}α∈ωω is a neighborhood base at x , there exists α ∈ ωω
such that Uα ⊂ Ox .
To finish the proof of Lemma 1, it suffices to prove another

Lemma 2

There exists k ∈ ω such that the set U↑α|k contains infinitely many
points xn, n ∈ ω.
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Proof of Lemma 2

Lemma 2

There exists k ∈ ω such that the set U↑α|k :=
⋂
β∈↑α|k Uβ contains

infinitely many points xn, n ∈ ω.

Proof.

Without loss of generality we can assume that xn 6= x for all n ∈ ω.
For every neighborhood U ⊂ X of x consider the set
F (U) = {n ∈ ω : xn ∈ U} ⊂ ω. It follows that

F := {F (U) : U is a neighborhood of x}

is a free filter on ω and the family {F (Uα)}α∈ωω is a monotone
base for F .
We claim that the filter F is analytic (as a subspace of the
power-set P(ω), endowed with the natural compact metrizable
topology).
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Analytic spaces

A topological space X is called analytic if X is continuous image of
ωω.

Known Fact

A metrizable separable space X is analytic if and only if X has a
compact resolution, which is a family (Kα)α∈ωω of compact subsets
of X such that X =

⋃
α∈ωω Kα and Kα ⊂ Kβ for all α ≤ β in ωω.
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on ω generated by the base consisting of the sets
F (Uα) = {n ∈ ω : xn ∈ Uα}, α ∈ ωω.

Observe that for every α ∈ ωω the set
↑F (Uα) := {F ⊂ ω : F (Uα) ⊂ F} is a compact subset of F and
moreover F =

⋃
α∈ωω ↑F (Uα), where ↑F (Uα) ⊂ ↑F (Uβ) for any

α ≤ β in ωω.

So,
(
↑F (Uα)

)
α∈ωω is a compact resolution of the subspace

F ⊂ P(ω) and hence the filter F is analytic and meager.

By the Talagrand’s characterization of meager filters on ω, there
exists a finite-to-one map ϕ : ω → ω such that for every F ∈ F the
image ϕ(F ) has finite complement in ω.
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on ω generated by the base consisting of the sets
F (Uα) = {n ∈ ω : xn ∈ Uα}, α ∈ ωω.

Observe that for every α ∈ ωω the set
↑F (Uα) := {F ⊂ ω : F (Uα) ⊂ F} is a compact subset of F and
moreover F =

⋃
α∈ωω ↑F (Uα), where ↑F (Uα) ⊂ ↑F (Uβ) for any

α ≤ β in ωω.

So,
(
↑F (Uα)

)
α∈ωω is a compact resolution of the subspace

F ⊂ P(ω) and hence the filter F is analytic and meager.

By the Talagrand’s characterization of meager filters on ω, there
exists a finite-to-one map ϕ : ω → ω such that for every F ∈ F the
image ϕ(F ) has finite complement in ω.

T.Banakh Generalizations of the first-countability



Continuation of the proof of Lemma 2

We need to prove that for some k ∈ ω the set U↑α|k contains
infinitely many points xn, n ∈ ω. To derive a contradiction, assume
that for every k ∈ ω the set Jk = {n ∈ ω : xn ∈ U↑α|k} is finite.

Choose an increasing number sequence (yk)k∈ω ∈ ωω such that
ϕ−1(yk) ∩ Jk = ∅ for all k ∈ ω.

For every k ∈ ω and n ∈ ϕ−1(k) we get xn /∈ U↑α|k and hence
xn /∈ Uβk,n for some βk,n ∈ ωω with βn|k = α|k . Then for
βk = max{βk,n : n ∈ ϕ−1(k)} and all n ∈ ϕ−1(k) we get xn /∈ Uβk .

Now consider the function β ∈ ωω defined by
β(i) = max{βk(i) : k ≤ i + 1} for i ∈ ω. It can be shown that
β ≥ βk and hence Uβ ⊂ Uβk for all k ∈ ω.

Then for any n ∈
⋃

k∈ω ϕ
−1(k) we get xn /∈ Uβ and hence⋃

k∈ω ϕ
−1(k) is disjoint with the set F (Uβ), which implies that

ϕ(F (Uβ)) is disjoint with the set {yk}k∈ω and cannot be cofinite
in ω. But this contradicts the choice of ϕ.
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Main Theorem

Thus we have proved

Theorem

If a topological space X has a neighborhood ωω-base at a point
x ∈ X , then X has a countable s∗-network at x.

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel’ski theorem)

Each countably tight Hausdorff Lindelöf space X with a
neighborhood ωω-base at each point has cardinality |X | ≤ c.

This corollary is a consequence of Main Theorem and

Theorem

Each countably tight Hausdorff space X with
countable s∗-character has cardinality |X | ≤ 2L(X )

where L(X ) is the Lindelöf number of X .
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